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Abstract

Our objective is the identification of dynamical parameters in gene networks. We focus on a hybrid version of Thomas’s framework [CCBE16]
in which discrete parameters are replaced by celerities which take real values, and whose possible values thus cannot be enumerated. Instead, we aim at
extracting constraints from biological knowledge to reduce the range of possible values for these celerities. Our approach extends [BCR15, BCK+15], based
on Hoare logic [Hoa69] and Dijkstra’s weakest precondition calculus [Dij75], where biological traces are considered as imperative programs.

1) Hybrid Thomas Framework [CCBE16]
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Figure 1: The gene network controlling the lacI repressor regulation of the

lactose operon in E. Coli.

∗ Discrete parameters kv,ω ∈ N are replaced by celerities Cv,ω,n ∈ R, with
v a variable, ω a set of resources of v and n a discrete level of v.
∗ A state h = (η, π) is made of a discrete part η and a fractional part π.

B

1

0 1 A 

∆′
t

∆t

h1

h2

h′
2 |= PostC

h′
1 |= PreC

Figure 2: Example of a hybrid path containing a alternation of continuous transitions

(e.g., h′1 → h1) and discrete transitions (e.g., h1 → h′2).

Inside each discrete state, a linear (continuous) behavior takes place,
determining which variable can change its discrete level first.

2) Hoare Logic [Hoa69]

Hoare logic consists of Hoare triples:

{Pre} p {Post}
with Pre, Post two propositions and p an imperative program.
Meaning: If Pre is true before the execution of p, then Post will
be true after the execution of p.

Syntax in the case of hybrid regulatory networks:

∗ Properties Pre and Post are couples (D,H) where D is a proposition
only on the discrete parts and H is a proposition on fractional parts and
celerities.

∗ The imperative program p is a succession of triples (∆t, assert, v+/−)
representing the successive behaviors inside each discrete state:

•∆t is the time spent in the state,

• assert is a set of assertions on the dynamics (slides modeling saturations),

• The discrete part of the instruction if either v+ or v−, with v a variable.

Semantics of an instruction (∆t, assert, v+):

∗ One continuous transition that lasts ∆t and respects assert.

∗ One discrete transition (e.g., v+) towards the next discrete state.
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3) Weakest Precondition Calculus

We compute the weakest precondition of a Hoare triple to infer
constraints on the model: WP(p, Post) ≡ (D′, H ′).
If p = (∆t, assert, v+) and Post = (D,H), then:

•D′ ≡ D[ηv\ηv + 1] and

•H ′ ≡ H ∧ Φ+
v (∆t) ∧ ¬W+

v ∧ Fv(∆t) ∧ A(∆t) ∧ Jv where:

∗ Φ+
v (∆t): v increases its fractional part up to the threshold;

∗ ¬W+
v : no celerities prevent v to increase its qualitative state;

∗ Fv(∆t): v is the first to reach its threshold and cross it;

∗ A(∆t): constraints given by assert;

∗ Jv: junction between the fractional parts of two successive states.

4) Example: Controlling the lacI Repressor by NRIp

Application to the model of Figure 1:{
D0
H0

} T1
>
B+

;

↑
D1, H1

 T2
slide+(B)
A−

;

↑
D2, H2

 T3
>
B−

;

↑
D3, H3

 T4
>
A+

{D4 ≡ (ηA = 2 ∧ ηB = 0)
H4 ≡ >

}
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Figure 3: A limit cycle with a slide permitted by the Hoare triple above.

First step of the backward strategy: (D3, H3) ≡ WP((T4,>, A+), (D4, H4)){
D3 ≡ (ηA = 1 ∧ ηB = 0)

H3

} T4
>
A+

{D4 ≡ (ηA = 2 ∧ ηB = 0)
H4 ≡ >

}

H3 ≡
(
¬(CB,∅,0 > 0) ∨ ¬(π′B1

> π′B0
− CB,∅,0 · T1)

)
∧ (CA,{m1,m3},1 > 0) ∧ (π′A1

= 1− CA,{m1,m3},1 · T1) ∧ (π′A0
= 0)

. . . And so on for H2, H1 and H0. In the end, H0 contains at least one
constraint for each celerity and fractional part.

5) Example: Application to the Cell Cycle [BCB+16]
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Figure 4: Left: Results from biological experiments. Right: Simulation using arbitrary

parameters respecting the constraints produced by the weakest precondition calculus

of our Hoare logic method.

The robustness of our formalism is demonstrated when comparing both
figures and biological knowledge not detailed here.
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