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Abstract

Background: This paper addresses the problem of finding attractors in biological regulatory networks.
We focus here on non-deterministic synchronous and asynchronous multi-valued networks, modeled
using Automata Networks (AN). AN is a general and well-suited formalism to study complex interactions
between different components (genes, proteins, ...). An attractor is a minimal trap domain, that is, a part
of the state-transition graph that cannot be escaped. Such structures are terminal components of the
dynamics and take the form of steady states (singleton) or complex compositions of cycles
(non-singleton). Studying the effect of a disease or a mutation on an organism requires finding the
attractors in the model to understand the long-term behaviors.
Results: We present a computational logical method based on Answer Set Programming (ASP) to
identify all attractors. Performed without any network reduction, the method can be applied on any
dynamical semantics. In this paper, we present the two most widespread non-deterministic semantics:
the asynchronous and the synchronous updating modes. The logical approach goes through a complete
enumeration of the states of the network in order to find the attractors without the necessity to construct
the whole state-transition graph. We realize extensive computational experiments which show good
performance and fit the expected theoretical results in the literature.
Conclusion: The originality of our approach lies on the exhaustive enumeration of all possible (sets of)
states verifying the properties of an attractor thanks to the use of ASP. Our method is applied to
non-deterministic semantics in two different schemes (asynchronous and synchronous). The merits of
our methods are illustrated by applying them to biological examples of various sizes and comparing the
results with some existing approaches. It turns out that our approach succeeds to exhaustively
enumerate on a desktop computer, in a large model (100 components), all existing attractors up to a
given size (20 states). This size is only limited by memory and computation time.
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1 Introduction
In the last decades, the emergence of a wide range of new technologies have made it possi-
ble to produce a massive amount of biological data (genomics, proteomics...). This leads to
considerable developments in systems biology which takes profit from this data. In order
to understand the nature of a cellular function or more broadly a living biological system
(healthy or diseased), it is indeed essential to study not only the individual properties of cel-
lular components, but also their interactions. The behavior and functionalities of the cells
emerge from such networks of interactions.

Considering this paradigm, the long-term behavior of regulatory networks dynamics is of
specific interest [1]. Indeed, at any moment, a system may fall into a trap domain, which is a
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part of its dynamics that cannot be escaped. While evolving, the system may eventually fall
into a new and smaller trap domain, which reduces its possible future behaviors (making
previous states no longer reachable). This phenomenon depends on biological disruptions
or other complex phenomena. Such outline has been interpreted as distinct responses of the
organism, such as differentiating into distinct cell types in multicellular organisms [2].

Moreover, when refining a model of a living system, one way to remove inconsistencies
or to predict missing information in biological models consists in comparing the attractors
of the model with the experimentally observed long-term behavior. For instance, the model
of the cellular development of Drosophila melanogaster, was described using Boolean net-
works and their attractors [3, 4].

Various kinds of mathematical models have been proposed for the modeling of Bio-
logical Regulatory Networks (BRNs). These models include neural networks, differential
equations, Petri nets, Boolean Networks (BN) as proposed by Kauffman [5], probabilistic
Boolean networks, and other multi-valued models such synchronous/asynchronous Au-
tomata Networks (AN). In this paper, we use the AN formalism [6,7] to model BRNs. ANs
especially encompass the framework of René Thomas [8].

Qualitative frameworks have received substantial attention, because of their capacity to
capture the switching behavior of genetic or biological processes, and therefore, the study
of their long-term behavior. This explains our choice of a qualitative representation for the
identification of trap domains. In such a qualitative framework, a minimal trap domain can
take two different forms: it can be either a steady state, which is one state from which
the system does not evolve anymore, called also a fixed point; or an attractor, which is a
minimal set of states that loops indefinitely and cannot be escaped.

The computational problem of finding all attractors in a BRN is difficult. Even the sim-
pler problem of deciding whether the system has a fixed point, which can be seen as the
smallest kind of attractor, is NP-hard [9]. Based on this, many studies have proven that
computing attractors in BRNs is also a NP-hard problem [10,11]. Although some methods
exist with a lesser complexity, consisting for instance in randomly selecting an initial state
and following a long enough trajectory, hoping to eventually finding an attractor, they are
not exhaustive and may miss some (hard to reach) attractors.

Therefore, in the absence of more efficient exhaustive methods, it is still relevant to de-
velop an approach to resolve the original NP-hard problem of attractors identification. Such
an approach consists in exhaustively examine all possible states of a network, along with
all possible paths from each of these states. Obviously, this brute force method is very time
and memory consuming: 2n initial states have to be considered for a Boolean model with
n nodes; and multi-valued networks raise this value even more. Furthermore, a sufficient
number of computations have to be performed to ensure that all trajectories have been ex-
plored and all attractors are found. This high complexity justifies the use of a tool able to
tackle such hard problems.

The simplest way to detect attractors is to enumerate all the possible states and to run
simulation from each one until an attractor is reached [12]. This method ensures that all
attractors are detected but it has an exponential time complexity, therefore its applicability
is highly restricted by the network size.

Regarding BNs only, algorithms for detecting attractors have been extensively studied
in the literature. Irons [13] proposes to analyze partial states in order to discard potential
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attractors more efficiently. This method improves the efficiency from exponential time to
polynomial time for a subset of biological Boolean models that is highly dependent on
the topology (indegree, outdegree, update functions) of the underlying network. Another
method, called GenYsis [14], starts from one (randomly selected) initial state and detects
attractors by computing the successor and predecessor states of this initial state. It works
well for small BNs, but becomes inefficient for large BNs.

More generally, the efficiency and scalability of attractor detection techniques are further
improved with the integration of two techniques. This first is based on Binary Decision
Diagrams (BDD), a compact data structure for representing Boolean functions. In a recent
work [15], algorithms have been based on the reduced-order BDD (ROBDD) data structure,
which further speeds up the computation time of attractor detection. These BDD-based
solutions only work for BRNs of a hundred of nodes and also suffer from the infamous
state explosion problem, as the size of the BDD depends both on the regulatory functions
and the number of nodes in the BRN. The other technique consists in representing the
attractor enumeration problem as a satisfiability (SAT) problem such as in [16]. The main
idea is inspired by SAT-based bounded model-checking: the transition relation of the BRN
is unfolded into a bounded number of steps in order to construct a propositional formula
which encodes attractors and which is then solved by a SAT solver. In every step, a new
variable is required to represent a state of a node in the BRN. It is clear that the efficiency
of these algorithms largely depends on the number of unfolding steps and the number of
nodes in the BRN.

In [17], the authors separated the rules that describe the network (the nodes and their
interactions: activation or inhibition) from the rules that define its dynamics (for instance: a
gene will be activated in the next state if all its activators are active or when at least one of its
activators is active at the current state). This allows to obtain more flexible simulations, and
the authors also chose to use the declarative paradigm Answer Set Programming (ASP) [18]
in order to have more liberty in the expression of evolution rules. They illustrated that
specifying large networks with rather complicated behaviors becomes cumbersome and
error prone in paradigms like SAT, whereas this is much less the case in a declarative
approach such as theirs.

Our goal in this paper is to develop exhaustive methods to analyze a BRN modeled in AN.
We address two kinds of issues: finding all possible steady states of a BRN and enumer-
ating all attractors of a given size n ≥ 2. We focus on two widespread non-deterministic
update schemes (synchronous and asynchronous) and use ASP to solve these aforemen-
tioned issues. Although this approach is not new (see above), the use of ASP can still be
considered innovative in the field of dynamic properties analysis and our aim here is to
assess its computational potential.

Nevertheless, the originality of our contribution is to consider AN models: this formal-
ism does not restrict entities to have Boolean expression levels (active/inactive) as they can
have multi-valued ones. Complex interactions are modeled in an AN as automata transi-
tions instead of generic influences. This expressiveness allows to represent a wide range of
dynamical models with the AN framework, and the particular form of its local transitions
can be well handled in ASP. Finally, this framework allows to represent non-deterministic
synchronous models, contrary to previous works focusing on asynchronous or determinis-
tic synchronous models.
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We previously introduced some rough ideas of this approach in [19]. In the present paper,
we have extended this work by focusing on AN models, that are more expressive than the
previous Process Hitting framework [20]. We give a more detailed state-of-the-art and a
more in-depth formalization of the problems tackled and show the merits of our approach
on a case study and various benchmarks.

This paper is organized as follows. Section 2.1 presents the main definitions related to
the AN and the particular constructs that we will seek: fixed points and attractors. Section 3
briefly presents the ASP framework necessary to understand the encoding part. Section 4
details the part of our method that allows to present an AN model using ASP rules and
find all the fixed points in such a model. Then, Section 5 explains how to enumerate all
attractors in a model still using ASP. In Section 6 we give benchmarks of our methods on
several models of different sizes (up to 100 components). Finally, Section 7 concludes and
gives some perspectives to this work.

2 Preliminary Definitions
2.1 Automata Networks
Definition 1 introduces the formalism of automata networks (AN) [6] (see Figure 1) which
allows to model a finite number of discrete levels, called local states, into several automata.
A local state is denoted ai, where a is the name of the automaton, corresponding usually to
a biological component, and i is a level identifier within a. At any time, exactly one local
state of each automaton is active, modeling the current level of activity or the internal state
of the automaton. The set of all active local states is called the global state of the network.

The possible local evolutions inside an automaton are defined by local transitions. A local
transition is a triple noted ai

`→ aj and is responsible, inside a given automaton a, for the
change of the active local state (ai) to another local state (aj), conditioned by the presence
of a set ` of local states belonging to other automata and that must be active in the current
global state. Such a local transition is playable if and only if ai and all local states in the
set ` are active. Thus, it can be read as “all the local states in ` can cooperate to change the
active local state of a by making it switch from ai to aj”. It is required that ai and aj are
two different local states in automaton a, and that ` contains no local state of automaton
a. We also note that ` should contain at most one local state per automaton, otherwise the
local transition is unplayable; ` can also be empty.
Definition 1 (Automata Network) An Automata Network is a triple (Σ,S, T ) where:
• Σ = {a, b, . . . } is the finite set of automata identifiers;
• For each a ∈ Σ, Sa = {ai, . . . , aj} is the finite set of local states of automaton a;
S =

∏
a∈Σ Sa is the finite set of global states; LS = ∪a∈ΣSa denotes the set of all

the local states.
• For each a ∈ Σ, Ta = {ai

`→ aj ∈ Sa × ℘(LS \ Sa) × Sa | ai 6= aj} is the set of
local transitions on automaton a; T =

⋃
a∈Σ Ta is the set of all local transitions in

the model.
For a given local transition τ = ai

`→ aj , ai is called the origin or τ , ` the condition and
aj the destination, and they are respectively noted ori(τ), cond(τ) and dest(τ).
Example 1 Figure 1 represents an AN (Σ,S, T ) with 4 automata (among which two con-
tain 2 local states and the two others contain 3 local states) and 12 local transitions:
• Σ = {a, b, c, d},
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Figure 1 An example of an AN model with 4 automata: a, b, c and d. Each box represents an
automaton (modeling a biological component), circles represent their local states (corresponding to
their discrete expression levels) and the local transitions are represented by arrows labeled by their
necessary conditions (consisting of a set of local states from other automata). The automata a and
c are either at level 0 or 1, and b and d have 3 levels (0, 1 and 2). The grayed local states stand for
the network state 〈a0, b1, c1, d0〉.

• Sa = {a0, a1}, Sb = {b0, b1, b2}, Sc = {c0, c1}, Sd = {d0, d1, d2},

• T = { a0
{c1}−→ a1, a1

{b2}−→ a0, b0
{d0}−→ b1, b0

{a1,c1}−→ b2, b1
{d1}−→ b2, b2

{c0}−→ b0,

c0
{a1,b0}−→ c1, c1

{d2}−→ c0, d0
{b2}−→ d1, d0

{a0,b1}−→ d2, d1
{a1}−→ d0, d2

{c0}−→ d0 }.
The local transitions given in Definition 1 thus define concurrent interactions between

automata. They are used to define the general dynamics of the network, that is, the possible
global transitions between global states, according to a given update scheme. In the fol-
lowing, we will only focus on the (purely) asynchronous and (purely) synchronous update
schemes, which are the most widespread in the literature. The choice of such an update
scheme mainly depends on the considered biological phenomena modeled and the mathe-
matical abstractions chosen by the modeler.

2.2 Update Schemes and Dynamics of Automata Networks
As explained in the previous section, a global state of an AN is a set of local states of
automata, containing exactly one local state of each automaton. In the following, we give
some notations related to global states, then we define the global dynamics of an AN.

The active local state of a given automaton a ∈ Σ in a global state ζ ∈ S is noted ζ[a].
For any given local state ai ∈ LS, we also note: ai ∈ ζ if and only if ζ[a] = ai, which
means that the biological component a is in the discrete expression level labeled i within
state ζ. For a given set of local states X ⊆ LS, we extend this notation to X ⊆ ζ if and
only if ∀ai ∈ X, ai ∈ ζ, meaning that all local states of X are active in ζ.

Furthermore, for any given local state ai ∈ LS, ζ e ai represents the global state that
is identical to ζ, except for the local state of a which is substituted with ai: (ζ e ai)[a] =

ai ∧ ∀b ∈ Σ \ {a}, (ζ e ai)[b] = ζ[b]. We generalize this notation to a set of local states
X ⊆ LS containing at most one local state per automaton, that is, ∀a ∈ Σ, |X ∩ Sa| ≤ 1

where |S| is the number of elements in set S; in this case, ζ eX is the global state ζ where
the local state of each automaton has been replaced by the local state of the same automaton



Ben Abdallah et al. Page 6 of 31

in X , if there exists: ∀a ∈ Σ, (X ∩ Sa = {ai} ⇒ (ζ eX)[a] = ai) ∧ (X ∩ Sa = ∅ ⇒
(ζ eX)[a] = ζ[a]).

In Definition 2 we formalize the notion of playability of a local transition which was
informally presented in the previous section. Playable local transitions are not necessarily
used as such, but combined depending on the chosen update scheme, which is the subject
of the rest of the section.
Definition 2 (Playable Local Transitions) Let AN = (Σ,S, T ) be an Automata Net-
work and ζ ∈ S a global state. The set of playable local transitions in ζ is called Pζ
and defined by: Pζ = {ai

`→ aj ∈ T | ` ⊆ ζ ∧ ai ∈ ζ}.
The dynamics of the AN is a composition of global transitions between global states,

that consist in applying a set of local transitions. Such sets are different depending on
the chosen update scheme. In the following, we give the definition of the asynchronous
and synchronous update schemes by characterizing the sets of local transitions that can
be “played” as global transitions. The asynchronous update sets (Definition 3) are made
of exactly one playable local transition; thus, a global asynchronous transition changes
the local state of exactly one automaton. On the other hand, the synchronous update sets
(Definition 4) consist of exactly one playable local transition for each automaton (except
the automata where no local transition is playable); in other words, a global synchronous
transition changes the local state of all automata that can evolve at a time. Empty update
sets are not allowed for both update schemes. In the definitions below, we willingly mix
the notions of “update scheme” and “update set”, which are equivalent here.
Definition 3 (Asynchronous update scheme) Let AN = (Σ,S, T ) be an Automata Net-
work and ζ ∈ S a global state. The set of global transitions playable in ζ for the asyn-
chronous update scheme is given by:

U asyn(ζ) = {{ai
`→ aj} | ai

`→ aj ∈ Pζ}.

Definition 4 (Synchronous update scheme) Let AN = (Σ,S, T ) be an Automata Net-
work and ζ ∈ S a global state. The set of global transitions playable in ζ for the syn-
chronous update scheme is given by:

U syn(ζ) = {u ⊆ T | u 6= ∅ ∧ ∀a ∈ Σ, (Pζ ∩ Ta = ∅ ⇒ u ∩ Ta = ∅)∧
(Pζ ∩ Ta 6= ∅ ⇒ |u ∩ Ta| = 1)}.

Once an update scheme has been chosen, it is possible to compute the corresponding
dynamics of a given AN. Thus, in the following, when it is not ambiguous and when results
apply to both of them, we will denote by U a chosen update scheme among U asyn and U syn.
Definition 5 formalizes the notion of a global transition depending on a chosen update
scheme U .
Definition 5 (Global Transition) LetAN = (Σ,S, T ) be an Automata Network, ζ1, ζ2 ∈
S two states and U an update scheme (i.e., U ∈ {U asyn, U syn}). The global transition
relation between two states ζ1 and ζ2 for the update scheme represented byU , noted ζ1 →U

ζ2, is defined by:

ζ1 →U ζ2 ⇐⇒ ∃u ∈ U (ζ1), ζ2 = ζ1 e {dest(τ) ∈ LS | τ ∈ u}.

The state ζ2 is called a successor of ζ1.
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We note that in a deterministic dynamics, each state has only one successor. However,
in case of non-deterministic dynamics, such as the asynchronous and synchronous update
schemes of this paper, each state may have several possible successors.

Example 2 Figures 2 and 3 illustrate respectively the asynchronous and synchronous up-
date schemes on the model of Figure 1. Each global transition is depicted by an arrow
between two global states. Only an interesting subset of the whole dynamics is depicted in
both figures.

At this point, it is important to remind that the empty set never belongs to the update
schemes defined above: ∀ζ ∈ S, ∅ /∈ U asyn(ζ) ∧ ∅ /∈ U syn(ζ). The consequence on the
dynamics is that a global state can never be its own successor. In other words, even when
no local transition can be played in a given global state (i.e., Pζ = ∅), we do not add a “self-
transition” on this state. Instead, this state has no successors and is called a fixed point, as
defined later in this section.

Definition 6 explains what are in-conflict local transitions, which are interesting in the
scope of the synchronous update scheme. Two local transitions are in-conflict if they be-
long to the same automaton and produce some non-determinism inside this automaton.
Such phenomenon arises when both local transitions have the same origin and compati-
ble conditions, but their destinations are different; or, in other words, there exists a global
state in which they are both playable. In such a case, they allow the automaton to evolve in
two different possible local states from the same active local state, thus producing a non-
deterministic behavior. This definition will be used in the discussion of the next section and
in Section 5.

Definition 6 (In-conflict local transitions) Let AN = (Σ,S, T ) be an Automata Net-
work, a ∈ Σ an automaton and τ1, τ2 ∈ Ta two local transitions in this automaton. τ1 and
τ2 are said in-conflict if and only if:

ori(τ1) = ori(τ2) ∧ dest(τ1) 6= dest(τ2) ∧ ∃ζ ∈ S such that τ1 ∈ Pζ ∧ τ2 ∈ Pζ .

Finally, Definition 7 introduces the notions of path and trace which are used to charac-
terize a set of successive global states with respect to a global transition relation. Paths are
useful for the characterization of attractors that are the topic of this work. The trace is the
set of all global states traversed by a given path (thus disregarding the order in which they
are visited). We note that a path is a sequence and a trace is a set.

Definition 7 (Path and Trace) Let AN = (Σ,S, T ) be an Automata Network, U an up-
date scheme and n ∈ N \ {0} a strictly positive integer. A sequence H = (Hi)i∈J0;nK ∈
Sn+1 of global states is a path of length n if and only if: ∀i ∈ J0;n − 1K, Hi →U Hi+1.
H is said to start from a given global state ζ ∈ S if and only if: H0 = ζ. Finally,
the trace related to such a path is the set of the global states that have been visited:
trace(H) = {Hj ∈ S | j ∈ J0;nK}.

In the following, when we define a path H of length n, we use the notation Hi to denote
the ith element in the sequence H , with i ∈ J0;nK. We also use the notation |H| = n

to denote the length of a path H , allowing to write: H|H| to refer to its last element. We
also recall that a path of length n models the succession of n global transitions, and thus
features up to n+ 1 states (some states may be visited more than once).
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Example 3 The following sequence is a path of length 6 for the asynchronous update
scheme:

H = (〈a1, b2, c1, d1〉; 〈a0, b2, c1, d1〉; 〈a1, b2, c1, d1〉; 〈a1, b2, c1, d0〉;

〈a0, b2, c1, d0〉; 〈a0, b2, c1, d1〉; 〈a1, b2, c1, d1〉)

We have: trace(H) = {〈a1, b2, c1, d1〉, 〈a0, b2, c1, d1〉, 〈a1, b2, c1, d0〉, 〈a0, b2, c1, d0〉}
and: |trace(H)| = 4. We note that H0 = H2 = H6 and H1 = H5.

When there is one or several repetitions in a given path of length n (i.e., if a state is visited
more than once), its trace is then of size strictly lesser than n+ 1. More precisely, one can
compute the size of the trace corresponding to a given path by subtracting the number of
repetitions in that path (Lemma 1). For this, we formalize in Definition 8 the notion of
repetitions in a path, that is, the global states that are featured several times, designated by
their indexes.
Definition 8 (Repetitions in a Path) Let AN = (Σ,S, T ) be an Automata Network, n ∈
N \ {0} a strictly positive integer and H a path of length n. The set of repetitions in H is
given by:

sr(H) = {i ∈ J1;nK | ∃j ∈ J0; i− 1K, Hj = Hi}.

Lemma 1 (Size of a Trace) Let H be a path of length n. The number of elements in its
trace is given by:

|trace(H)| = n+ 1− |sr(H)|.

Proof of Lemma 1. By definition of a set, and knowing that |sr(H)| counts the number of
states that exist elsewhere in H with a lesser index. �

We note that if there is no repetition in a path of length n (sr(H) = ∅ ⇒ |sr(H)| = 0),
then the number of visited states is exactly: |trace(H)| = n+ 1.
Example 4 We can check Lemma 1 on the path H given in Example 3. Indeed,
〈a1, b2, c1, d1〉 is featured 3 times at H0, H2 and H6. Then, according to the Definition 8,
this state is repeated twice at H2 and H6 because the first visit of this state is not computed
in sr(H). In addition, the state 〈a0, b2, c1, d1〉 is featured twice in this path, at H1 and H5,
therefore it is considered as repeated once at H5. Thus, sr(H) = {2, 6, 5}, |sr(H)| = 3

and |trace(H)| = 6 + 1− 3 = 4.

2.3 Determinism and Non-Determinism of the Update Schemes
In the general case, in multi-valued networks, both the asynchronous and synchronous
update schemes are non-deterministic, which means that a global state can have several
successors.

In the case of the asynchronous update scheme, the non-determinism may come from
in-conflict local transitions, but it actually mainly comes from the fact that exactly one
local transition is taken into account for each global transition (see Definition 3). Thus,
for a given state ζ ∈ S , as soon as |Pζ | > 1, several successors may exist. In the model
of Figure 1, for example, the global state 〈a1, b2, c0, d1〉 (in green on Figure 2) has three
successors: 〈a1, b2, c0, d1〉 →Uasyn 〈a0, b2, c0, d1〉, 〈a1, b2, c0, d1〉 →Uasyn 〈a1, b0, c0, d1〉
and 〈a1, b2, c0, d1〉 →Uasyn 〈a1, b2, c0, d0〉.
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In the case of the synchronous update scheme (see Definition 4), however, the non-
determinism on the global scale is only generated by in-conflict local transitions (see Def-
inition 6), that is, local transitions that create non-determinism inside an automaton. For

example, the model of Figure 1 features two local transitions b0
{d0}−→ b1 and b0

{a1,c1}−→ b2
that can produce the two following global transitions from the same state (depicted by
red arrows on Figure 3): 〈a1, b0, c1, d0〉 →U syn 〈a1, b1, c1, d0〉 and 〈a1, b0, c1, d0〉 →U syn

〈a1, b2, c1, d0〉. Note that for this particular case, these transitions also exist for the asyn-
chronous scheme (also depicted by red arrows on Figure 2).

Therefore, it is noteworthy that if every automaton contains only two local states (such
a network is often called “Boolean”) then the synchronous update scheme becomes com-
pletely deterministic. Indeed, it is not possible to find in-conflict local transitions anymore
because for each possible origin of a local transition, there can be only one destination
(due to the fact that the origin and destination of a local transition must be different). This
observation can speed up the computations in this particular case.

2.4 Fixed Points and Attractors in Automata Networks
Studying the dynamics of biological networks was the focus of many works, explaining
the diversity of existing frameworks dedicated to modeling and the different methods de-
veloped in order to identify some patterns, such as attractors [9,11,17,21,22]. In this paper
we focus on several sub-problems related to this: we seek to identify the steady states and
the attractors of a given network. The steady states and the attractors are the two long-term
structures in which any dynamics eventually falls into. Indeed, they consist in terminal (sets
of) global states that cannot be escaped, and in which the dynamics always ends.

In the following, we consider a BRN modeled in AN (Σ,S, T ), and we formally define
these dynamical properties. We note that since the AN formalism encompasses Thomas
modeling [8], all our results can be applied to the models described by this formalism,
as well as any other framework that can be described in AN (such as Boolean networks,
Biocham [23]...).

A fixed point is a global state which has no successor, as given in Definition 9. Such
global states have a particular interest as they denote conditions in which the model stays
indefinitely. The existence of several of these states denotes a multistability, and possible
bifurcations in the dynamics [1].
Definition 9 (Fixed Point) Let AN = (Σ,S, T ) be an Automata Network, and U be an
update scheme (U ∈ {U asyn, U syn}). A global state ζ ∈ S is called a fixed point (or
equivalently steady state) if and only if no global transition can be played in this state:

U (ζ) = ∅.

It is notable that the set of fixed points of a model (that is, the set of states with no
successor) is the same in both update schemes asynchronous and synchronous update [24,
25]: ∀ζ ∈ S, U asyn(ζ) = ∅ ⇐⇒ U syn(ζ) = ∅.
Example 5 The state-transition graphs of Figures 2 and 3 depict three fixed points col-
ored in red: 〈a1, b1, c1, d0〉, 〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉. Visually, they can be easily
recognized because they have no outgoing arrow (meaning that they have no successors).
Although these figures do not represent the whole dynamics, but they allow to check that
in both update schemes the fixed points are the same, at least on this subset of the overall
behavior.
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Another complementary dynamical pattern consists in the notion of non-unitary trap
domain (Definition 10), which is a (non-singleton) set of states that the dynamics can-
not escape, and thus in which the system indefinitely remains. In this work, we focus
more precisely on (non-singleton) attractors (Definition 11), that are cyclic and minimal
trap domains in terms of sets inclusion. In order to characterize such attractors, we use
the notion of cycle (Definition 12), which is a looping path. Indeed, a cycle is a strongly
connected component (Lemma 2), allowing us to give an alternative definition for an at-
tractor (Lemma 3). Formally speaking, fixed points can be considered as attractors of size
1. However, in the scope of this paper and for the sake of clarity, we call “attractors” only
non-unitary attractors, that is, only sets containing at least two states. This is justified by
the very different approaches developed for fixed points and attractors in the next sections.
Definition 10 (Trap Domain) Let AN = (Σ,S, T ) be an Automata Network and U an
update scheme. A set of global states T, with |T| ≥ 2, is called a trap domain (regarding
a scheme U ) if and only if the successors of each of its elements are also in T:

∀ζ1 ∈ T ∧ ∀ζ2 ∈ S if ζ1 →U ζ2 then ζ2 ∈ T.

Definition 11 (Attractor) Let AN = (Σ,S, T ) be an Automata Network and U an up-
date scheme. A set of global states A, with |A| ≥ 2, is called an attractor (regarding
scheme U ) if and only if it is a minimal trap domain in terms of inclusion.
Definition 12 (Cycle) Let AN = (Σ,S, T ) be an Automata Network, U an update
scheme and C a path of length n for this update scheme. C is called a cycle of length
n (regarding a scheme U ) if and only if it loops back to its first state:

Cn = C0.

Example 6 The path H of length 6 given in Example 3 is a cycle because H0 = H6.
Lemma 2 states that the set of (traces of) cycles in a model is exactly the set of strongly

connected components. Indeed, a cycle allows to “loop” between all states that it contains,
and conversely, a cycle can be built from the states of any strongly connected component.
This equivalence is used in the next lemma.
Lemma 2 (The Traces of Cycles are the SCCs) The traces of the cycles are exactly the
strongly connected components (with respect to the global transition relation).
Proof of Lemma 2. (⇒) From any state of a cycle, it is possible to reach all the other states
(by possibly cycling). Therefore, the trace of this cycle is a strongly connected component.
(⇐) Let S = {ζi}i∈J0;nK be a strongly connected component in which the elements are
arbitrarily labeled. Because it is a strongly connected component, for all i ∈ J0;nK, there
exists a path Hi made of elements of S so that Hi

0 = ζi and Hi
|Hi| = ζi+1 (or Hn

|Hn| =

ζ0 for i = n). We create a path C by concatenation of all paths H0, H1, . . . ,Hn by
merging the first and last element of each successive path, which is identical: ∀i ∈ J0;n−
1K, Hi

|Hi| = ζi+1 = Hi+1
0 . C is a cycle, because C0 = H0

0 = ζ0 = Hn
|Hn| = C|C|.

Furthermore, ∀i ∈ J0;nK, ζi = Hi
0 ∈ trace(C), thus S ⊆ trace(C). Finally, only states

from S have been used to build C, thus trace(C) ⊆ S. Therefore, trace(C) = S. �

In Definition 11, attractors are characterized in the classical way, that is, as minimal trap
domains. However, we use an alternative characterization of attractors in this paper, due to
the specifics of ASP: Lemma 3 states that an attractor can alternatively be defined as a trap
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domain that is also a cycle, and conversely. In other words, the minimality requirement is
replaced by a cyclical requirement.
Lemma 3 (The Attractors are the Trap Cycles) The attractors are exactly the traces of
cycles which are trap domains.
Proof of Lemma 3. (⇒) By definition, an attractor is a trap domain. It is also a strongly
connected component, and thus, from Lemma 2, it is the trace of a cycle. (⇐) Let C be
both a cycle and a trap domain. From Lemma 2, C is also a strongly connected component.
Let us prove by contradiction that C is a minimal trap domain, by assuming that it is not
minimal. This means that there exists a smaller trap domain D ( C. Let us consider x ∈ D

and y ∈ C \D. Because D is a trap domain, it exists no path between x and y; this is in
contradiction with C being a strongly connected component (as both x and y belong to C).
Therefore, C is a minimal trap domain, and thus an attractor. �

As explained before, Lemma 3 will be used in Section 5. Indeed, directly searching for
minimal trap domains would be too cumbersome; instead, we enumerate cycles of length n
in the dynamics of the model and filter out those that are not trap domains. The remaining
results are the attractors formed of cycles of length n. The previous lemma ensures the
soundness and completeness of this search for a given value of n.
Lemma 4 (Characterization of Non-Attractors) Let A ⊂ S be a set of states. If ∃ζ1 ∈
A and ∃ζ2 ∈ S \A such that ζ1 →U ζ2 then A is not an attractor.
Proof of Lemma 4. By definition, A is not a trap domain (Definition 10) and thus it is not
an attractor (Definition 11). �

Example 7 The state-transition graphs of Figures 2 and 3 feature different attractors:
• {〈a0, b1, c0, d0〉, 〈a0, b1, c0, d2〉} is depicted in blue and appears in both figures. It is

a cyclic attractor, because it contains exactly one cycle.
• {〈a0, b2, c1, d0〉, 〈a0, b2, c1, d1〉, 〈a1, b2, c1, d1〉, 〈a1, b2, c1, d0〉} is only present for

the asynchronous update scheme and is depicted in yellow on Figure 2. It is a com-
plex attractor, that is, a composition of several cycles.

• {〈a1, b2, c1, d1〉, 〈a0, b2, c1, d0〉} is, on the contrary, only present for the synchronous
update scheme and is depicted in gray on Figure 3. It is also a cyclic attractor.

For each of these attractors, the reader can check that they can be characterized as cycles
that are trap domains. For instance, the second attractor can be found by considering the
following cycle:

A = (〈a0, b2, c1, d0〉; 〈a0, b2, c1, d1〉; 〈a1, b2, c1, d1〉; 〈a1, b2, c1, d0〉; 〈a0, b2, c1, d0〉)

and checking that its trace is a trap domain (which is visually confirmed in Figure 2 by the
absence of outgoing arrows from any of the yellow states).

On the other hand, the following cycle is not an attractor:

C = (〈a1, b2, c0, d1〉; 〈a1, b2, c0, d0〉; 〈a1, b2, c0, d1〉).

Indeed, although it is a cycle, it features outgoing transitions (such as, for instance, transi-
tion 〈a1, b2, c0, d0〉 →Uasyn 〈a0, b2, c0, d0〉) and thus is not a trap domain.

The aim of the rest of this paper is to tackle the enumeration of fixed points (Section 4)
and attractors (Section 5) in an AN. For this, we use ASP (Section 3) which is a declarative
paradigm dedicated to the resolution of complex problems.
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figures/stg-asynch.pdf

Figure 2 A part of the state-transition graph of the AN given in Figure 1 for the asynchronous
update scheme, computed from the initial state: 〈a1, b2, c0, d1〉 until reaching attractors. We can
observe three fixed points: 〈a1, b1, c1, d0〉, 〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉; an attractor of size 2:
{〈a0, b1, c0, d0〉, 〈a0, b1, c0, d2〉} (in blue) and an attractor of size 4: {〈a1, b2, c1, d1〉,
〈a0, b2, c1, d1〉, 〈a0, b2, c1, d0〉, 〈a1, b2, c1, d0〉} (in yellow).

figures/stg-synch.pdf

Figure 3 A part of the state-transition graph of the AN given in Figure 1 for the synchronous
update scheme, computed from several initial states, such as 〈a1, b2, c0, d1〉, until reaching
attractors. It features non-deterministic global transitions, depicted by the two red arrows. We can
observe the same three fixed points than for the asynchronous update scheme of Figure 2, but
instead two attractors of size 2: {〈a0, b1, c0, d0〉, 〈a0, b1, c0, d2〉} (in blue) and
{〈a1, b2, c1, d1〉, 〈a0, b2, c1, d0〉} (in gray).

3 Answer Set Programming
In this section, we briefly recapitulate the basic elements of ASP [18], a declarative lan-
guage that proved efficient to address highly computational problems. An answer set pro-
gram is a finite set of rules of the form:

a0 ← a1, . . . , am, not am+1, . . . , not an. (1)

where n ≥ m ≥ 0, a0 is an atom or ⊥, all a1, . . . , an are atoms, and the symbol “not”
denotes negation as failure. The intuitive reading of such a rule is that whenever a1, . . . , am

are known to be true and there is no evidence for any of the negated atoms am+1, . . . , an

to be true, then a0 has to be true as well. An atom or a negated atom is also called a literal.
Some special rules are noteworthy. A rule where m = n = 0 is called a fact and is useful

to represent data because the left-hand atom a0 is thus always true. It is often written
without the central arrow (see rule (2)). On the other hand, a rule where n > 0 and a0 = ⊥
is called a constraint. As ⊥ can never become true, if the right-hand side of a constraint is
true, this invalidates the whole solution. Constraints are thus useful to filter out unwanted
solutions. The symbol ⊥ is usually omitted in a constraint (see rule (3)).

a0. (2)

← a1, . . . , am, not am+1, . . . , not an. (3)

In the ASP paradigm, the search of solutions consists in computing the answer sets of a
given program. An answer set for a program is defined by Gelfond and Lifschitz [26] as
follows. An interpretation I is a finite set of propositional atoms. A rule r as given in (1) is
true under I if and only if:

{a1, . . . , am} ⊆ I ∧ {am+1, . . . , an} ∩ I = ∅ ⇒ a0 ∈ I .

An interpretation I is a model of a program P if each rule r ∈ P is true under I . Finally,
I is an answer set of P if I is a minimal (in terms of inclusion) model of P I , where P I is
defined as the program that results from P by deleting all rules that contain a negated atom
that appears in I , and deleting all negated atoms from the remaining rules.
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Programs can yield no answer set, one answer set, or several answer sets. For example,
the following program:

b ← not c. (4)

c ← not b. (5)

produces two answer sets: {b} and {c}. Indeed, the absence of c makes b true, and con-
versely absence of bmakes c true. Cardinality constructs are another way to obtain multiple
answer sets. The most usual way of using a cardinality is in place of a0:

l {q1, . . . , qk} u ← a1, . . . , am, not am+1, . . . , not an.

where k ≥ 0, l is an integer and u is an integer or the infinity (∞). Such a cardinality means
that, under the condition that the body is satisfied, the answer set X must contain at least l
and at most u atoms from the set {q1, ..., qm}, or, in other words: l ≤ |{q1, ..., qm}∩X| ≤ u
where ∩ is the symbol of sets intersection and |A| denotes the cardinality of set A. We note
that several answer sets may match this definition, as there may be numerous solutions X
to this equation. Using cardinalities, the program example of (4) and (5) can be summed
up into the following program containing one only fact:

1 {b, c} 1.

If they are not explicitly given, l defaults to 0 and u defaults to∞. Furthermore, if such a
cardinality is found in the body of a rule, then it is true if the above condition is satisfied.

Atoms in ASP are expressed as predicates with an arity, that is, they can apply to terms
(also called arguments). For instance, let us take the following program:

fishesCannotF ly.

fish(shark).

livesIn(X,water) ← fish(X), fishesCannotF ly.

The intuitive meaning of this program is that if fish do not fly (which is the case) and that
something is a fish, then this thing lives in water. Here, fishesCannotF ly is a predicate
with arity zero (no terms), fish has arity one (one term, defining something that is a fish),
and livesIn has arity two (the first term lives in the second term). On the other hand, the
terms shark and water are constants while X is a variable, which can stand for any atom.
By convention, constant names start with a low letter or are written in quotes, and variable
names start with a capital letter.

However, solving an ASP program as explained above requires that it contains no vari-
able; for this, a grounding step is first required, consisting in the removal of all free variables
by replacing them by possible constants while preserving the meaning of the program. In
the example above, the grounding step produces the following variable-free program, where
X is replaced by the only suitable constant shark:

fishesCannotF ly.

fish(shark).

livesIn(shark, water) ← fish(shark), fishesCannotF ly.
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After solving, the only answer set corresponding to this program is:

fishesCannotFly fish(shark) livesIn(shark,water)

For the present work, we used CLINGO[1] [27] which is a combination of a grounder and
a solver. In the rest of this paper, we use ASP to tackle the problems of enumerating all
fixed points and attractors of a given AN model.

4 Fixed Points Enumeration
The first aspect of our work is the enumeration of a special type of trap domains: fixed
points (also called stable states or steady states) which are composed of only one global
state (see Definition 9). They can be studied separately from attractors because their enu-
meration follows a different pattern which is more specific to this problem. A previous
version of this work using another framework (Process Hitting) is presented in [19]. Al-
though the main idea is preserved, the work we present here is different because we are
interested in the more expressive AN framework in which the transitions have a different
form.

4.1 Translating Automata Networks into Answer Set Programs
Before any analysis of an AN, we first need to express it with ASP rules. We developed a
dedicated converter named AN2ASP[2] and we detail its principle in the following.

First, the predicate automatonLevel(A,I) is used to define each automaton A

along with its local state I. The local transitions are then represented with two predi-
cates: condition which defines each element of the condition along with the origin, and
target which defines the target of the local transition. Each local transition is labeled by
an identifier that is the same in its condition and target predicates. Example 8 shows
how an AN model is defined with these predicates.
Example 8 (Representation of AN model in ASP) Here is the representation of the AN
model of Figure 1 in ASP:

1 % Automata and local states
2 automatonLevel("a",0..1). automatonLevel("b",0..2).
3 automatonLevel("c",0..1). automatonLevel("d",0..2).
4 automaton(A) ← automatonLevel(A,_).
5 localTrans(T) ← target(T,_,_).
6 % Local transitions on a
7 condition(1,"a",0). target(1,"a",1). condition(1,"c",1).
8 condition(2,"a",1). target(2,"a",0). condition(2,"b",2).
9 % Local transitions on b

10 condition(3,"b",0). target(3,"b",1). condition(3,"d",0).
11 condition(4,"b",0). target(4,"b",2). condition(4,"c",1). condition(4,"a",1).
12 condition(5,"b",1). target(5,"b",2). condition(5,"c",1).
13 condition(6,"b",2). target(6,"b",0). condition(6,"c",0).
14 % Local transitions on c
15 condition(7,"c",0). target(7,"c",1). condition(7,"a",1). condition(7,"b",0).
16 condition(8,"c",1). target(8,"c",0). condition(8,"d",2).
17 % Local transitions on d
18 condition(9,"d",0). target(9,"d",1). condition(9,"b",2).
19 condition(10,"d",0). target(10,"d",2). condition(10,"a",0). condition(10,"b",1).
20 condition(11,"d",1). target(11,"d",0). condition(11,"a",1).
21 condition(12,"d",2). target(12,"d",0). condition(12,"c",0).

[1]We used CLINGO version 5.0: http://potassco.sourceforge.net/
[2]All programs and benchmarks are available as additional files and at http://www.irccyn.ec-nantes.
fr/˜benabdal/attractors.zip
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In lines 2–3 we define all the model automata with their local states. For example, the au-
tomaton "a" has two levels numbered 0 and 1; indeed, rule automatonLevel("a",
0..1). of line 2, for instance, will in fact expand into the two following rules:

automatonLevel("a",0). automatonLevel("a",1).

Besides, all the local transitions of the network are defined in lines 7–21; for instance,

all the predicates in line 7 declare the transition τ1 = a0
{c1}−→ a1, which is labeled 1.

We declare as many predicates condition as necessary in order to fully define a local
transition τ that has potentially several elements in its condition cond(τ). For instance,

transition b0
{a1,c1}−→ b2 is defined in line 11 with label 4 and requires three of these pred-

icates for b0, a1 and c1. Finally, in lines 4–5, predicate automaton gathers all existing
automata names in the model, and predicate localTrans gathers all transition labels.
The underscore symbol ( ) in the parameters of a predicate is a placeholder for any value.

Since the names of the biological components may start with a capital letter, it is prefer-
able to use the double quotes ("") around the automata names in the parameters of all
predicates to ensure that the automata names are understood as constants by the ASP
grounder and not as variables.

4.2 Fixed Points Search
The enumeration of fixed points requires to encode the definition of a fixed point (given
in Definition 9) as an ASP program through logic rules. The first step of this process is to
browse all the possible states of the network; in other words, all possible combinations of
automata local states are generated by choosing exactly one local level for each automa-
ton. However, before computing these combinations, we need to pre-process the list of the
selected local states in order to exclude each local state ai such that there exists a local
transition ai

∅→ aj ∈ T . Such local states cannot be stable, because the local transition

given above, called self-transition, is always playable: ∀ζ ∈ S, ai ∈ ζ ⇒ ai
∅→ aj ∈ Pζ .

This process is done through lines 23–27.

22 % The transition labeled by T is not a self-transition
23 notSelfTransition(T) ← condition(T,B,_), target(T,A,_), A!=B.
24 % Hide automaton levels having a self-transition
25 hiddenAutomatonLevel(A,I) ← not notSelfTransition(T), condition(T,A,I).
26 % The remaining automaton levels are not hidden
27 shownAutomatonLevel(A,I) ← not hiddenAutomatonLevel(A,I), automatonLevel(A,I).
28 % Enumerate all possible global states in different answer sets
29 1 { fix(A,I) : shownAutomatonLevel(A,I) } 1 ← automaton(A).
30 % T is a transition that is not playable in the selected global state
31 unPlayable(T) ← fix(A,I), condition(T,A,J), I!=J.
32 % The selected global state is not a fix point if it has a playable transition
33← not unPlayable(T), localTrans(T).

Line 29 constitutes a cardinality rule (as defined in Section 3) whose consequence is the
enumeration of all global states of the model in distinct answer sets. Each global state
is defined by considering exactly one local state for each existing automaton from the
shown ones defined in shownAutomatonLevel. Each global state is described using
predicates fix(A,I), named in anticipation of the final fixed point results, where I is the
active local state of automaton A.

The last step consists in filtering out any global state ζ, that is not a fixed point, among all
generated states. In this case, it consists in eliminating all candidate answer sets in which
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at least one local transition can be played, that is, where Pζ 6= ∅. Such a filtering part is
ideally realized with the use of one or several constraints. As explained in Section 3, a
constraint removes all answer sets that satisfy its right-hand part. Regarding our problem,
an answer set representing a given global state must be filtered out if there exists at least one
playable local transition in this state (line 33). A transition T is considered as unplayable
in a state, that is, T /∈ Pζ , if at least one of its conditions is not satisfied. For this, predicate
unPlayable(T) defined in line 31, flags a local transition as unplayable when one of
its condition contains a local state that is different from the local state of the same
automaton. This is used in the final constraint (line 33) which states that if there exists a
local transition which is playable in the considered global state (i.e., ∃T ∈ T ,T ∈ Pζ)
then this global state should be eliminated from the result answer sets (because it is not a
fixed point). In the end, the fixed points of a considered model are exactly the global states
represented in each remaining answer sets, described by the set of the atoms fix(A,I)
which define each automaton local state.
Example 9 (Fixed Point Enumeration) The AN model of Figure 1 contains 4 automata:
a and c have 2 local states while b and d have 3; therefore, the whole model has 2 ∗ 2 ∗
3 ∗ 3 = 36 states (whether they can be reached or not from a given initial state). We can
check that this model contains exactly 3 fixed points: 〈a1, b1, c0, d0〉, 〈a1, b1, c1, d0〉 and
〈a0, b0, c0, d1〉. All of them are represented in both Figures 2 and 3. In this model, no other
state verifies this property. We recall that the fixed points are identical for the synchronous
and asynchronous update schemes [24].

If we execute the ASP program detailed above (lines 23–33) alongside with the the AN
model given in Example 8 (lines 1–21), we obtain 3 answer sets that match the expected
result. The output of CLINGO is the following:

Answer: 1
fix("a",0) fix("b",1) fix("c",0) fix("d",1)
Answer: 2
fix("a",0) fix("b",0) fix("c",0) fix("d",1)
Answer: 3
fix("a",1) fix("b",1) fix("c",0) fix("d",0)

5 Length n Attractors Enumeration
In the previous section we gave a method to enumerate all fixed points of a given model.
In a sense, a fixed point can be considered as an attractor: it cannot be escaped and its size
(n = 1) makes it trivially minimal. However, attractors in the general case are made of
several states. In the rest of this paper, we exclude one-state attractors (tackled in the last
section 4). We focus on attractors composed with several-states (following Definition 11)
and we describe how to obtain some or all the attractors of a given length in a model.
Obtaining all attractors of any length can be theoretically tackled by gradually increasing
the considered length.

The computational method to enumerate all attractors of length n in AN models consists
in three steps:

1 Enumerate all paths of length n,
2 Remove all paths that are not cycles,
3 Remove all cycles that are not trap domains (i.e., keep only attractors).

Once all steps are passed, each trace of the remaining n-length paths is an attractor (fol-
lowing Lemma 3).
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5.1 Cycles Enumeration
The approach presented here first enumerates all the paths of length n in the AN model
(Definition 7). In an ASP program, it is possible to instantiate constants whose values are
defined by the user at each execution: this is the role of the lowercase n in step(0..n)
(line 26), that represents the number of considered steps. For example, knowing the initial
global state, step(0..5)will compute all paths of length 5 (thus containing 6 successive
global states).

In order to enumerate all the possible paths, step 0 should take the value of all the pos-
sible initial global states (line 28), in a similar way to the fixed point enumeration. Then,
identifying the successors of a given global state requires to identify the set of its playable
local transitions. We recall that a local transition is playable in a global state when its ori-
gin and all its conditions are active in that global state (see Definition 2). Therefore, we
define an ASP predicate unPlayable(T,S) in line 30 stating that a transition T is not
playable at a step S. More precisely, T cannot be played in the corresponding global state
of the system at step S, which is the case when at least one of its conditions is not satisfied.
Obviously, each local transition that is not unplayable, is a playable. From this, we will be
able to flag the actually played local transitions with played(T,S) (see later in lines 33
and 39).

25 % Define all the steps of the n-length path (from 0 to n)
26 step(0..n).
27 % Enumerate all initial states (corresponding to step 0)
28 1 { active(level(A,I),0) : automatonLevel(A,I) } 1 ← automaton(A).
29 % Compute unplayable local transitions at each step
30 unPlayable(T,S)) ← active(level(A,I),S), condition(T,A,J), I!=J, step(S).

In our approach, we tackle separately the computation of the dynamics and the resolu-
tion of our problem (namely, attractors enumeration). We show in the following how to
compute the evolution of the model through the asynchronous and the synchronous update
schemes, as presented in section 2.2. The piece of program that computes the attractors,
given afterwards, is common to whatever update schemes.

All possible evolutions of the network (that is, the resulting paths after playing a set of
global transitions) can be enumerated with a cardinality rule (explained in Section 3) such
as the ones in line 33 for the asynchronous update scheme, and line 39 for the synchronous
update scheme. Such rules reproduce all possible paths in the dynamics of the model by
representing each possible successor of a considered state as an answer set. This enumera-
tion encompasses the non-deterministic behavior (in both update schemes).

To enforce the strictly asynchronous dynamics which requires that exactly one automa-
ton changes during a global transition, we use the constraint of line 35 to remove all paths
where no local transition has been played, and the constraint of line 36 to remove all paths
where two or more local transitions have been played simultaneously. Thus, all the remain-
ing paths contained in the answer sets strictly follow the asynchronous dynamics given in
Definition 3. The underscore symbol ( ) in the parameters of a predicate is a placeholder
for any value. Here, it is used in place of the transition label, meaning that these rules are
applicable to any transition.

31 % Asynchronous
32 % At each step, compute all playable transitions in different answer sets
33 { played(T,S) } ← not unPlayable(T,S), localTrans(T), step(S)
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34 % Exactly one transition must be played at each step
35← 0 { played(_,S) } 0, step(S).
36← 2 { played(_,S) }, step(S).

The second update scheme corresponds to synchronous dynamics in which all playable
transitions that are not in-conflict have to be played (see Definition 4). Furthermore,
“empty” global transition are not allowed, even when when no transition is playable
(line 41).

37 % Synchronous
38 % At each step, compute all played transitions
39 1 { played(_,S) } ← not unPlayable(T,S), localTrans(T), step(S).
40 % At each step, at least one playable transition should be played
41← 0 { played(_,S) } 0, step(S).

In a nutshell, one should choose one of both pieces of program presented above, that is,
either lines 33–36 for the asynchronous update scheme, or lines 39–41 for the synchronous
one. The overall result of both of these pieces of programs is a collection of answer sets,
where each answer is a possible path of length n (that is, computed in n steps) and starting
from any initial state (at step 0).

Between two consecutive steps S and S+1, we witness that the active level of a given
automaton B has changed with the predicate change in line 43, which stores the chosen
local transition.

In-conflict local transitions (see Definition 6) cannot be played at the same step. They
are the only source of non-determinism in the synchronous update scheme, because the
dynamics has to “choose” which local transition to take into account. This property is
verified by the constraint in line 45, that states that at most one change can occur (i.e., one
transition can be played) in the same automaton. Finally, it is necessary to compute the
content of the new global state after each played global transition: if a change is witnessed,
then the related automaton has to change its level into the local state of the local transition
destination (lines 47–48) otherwise it remains the same (line 49).

42 % State changes
43 change(T,A,I,J,S) ← playable(T, S), target(T,A,J), condition(T,A,I).
44 % Maximum one change per automaton
45← X={change(_,A,I,_,S)}, step(S), automaton(A), X>1.
46 % Compute the next state: successor of each S
47 active(level(B,K),S+1) ← not change(_,B,_,_,S), active(level(B,K),S),
48 step(S), S<n.
49 active(level(B,K),S+1) ← change(_,B,_, K, S), S<n.

After the construction of a path of length n, it is required to check whether it is a cycle or
not. If it is a cycle, then consequently it is a strongly connected component (see Lemma 2).
To do so, we need a predicate different(S1,S2) (lines 52–54) which is true when an
automaton has different active levels in two global states visited at steps S1 and S2. On
the contrary, if different(S1,S2) is not true, this means that all active levels of all
automata are the same in both states. Thus, there is a cycle between S1 and S2 (line 56).
We finally eliminate all the paths that are not cycles of size n with the constraint of line 59,
that checks if the states at steps 0 and n are identical.

50 % S1 and S2 are different when there is at least one automaton having
51 % different active states in two steps
52 different(S1,S2,A) ← active(level(A,I), S1), active(level(A,J), S2),
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53 I!=J, step(S1), step(S2), automaton(A), S1!=S2.
54 different(S1,S2) ← different(S1,S2,_).
55 % Cycle from S1 to S2 when there is no difference between them
56 cycle(S1,S2) ← not different(S1,S2), step(S1), step(S2), S1!=S2.
57 % Eliminate all answers where there is no cycle between the first and
58 % the last visited states (i.e., it is not a SCC)
59← not cycle(0, n).

As given in Lemma 2, all remaining paths are strongly connected components. We finally
need to verify if they are trap domains (Lemma 3) in order to discriminate attractors.

5.2 Attractors Enumeration
Due to the non-deterministic behavior in the dynamics, each state in the state-transition
graph of a given AN may have several successors. Therefore a cyclic path is not neces-
sarily an attractor. The only certain exception is the case of the deterministic synchronous
update scheme (such as in Boolean models, as explained in Section 2.3). In this case, the
computation may be stopped here because a cycle is necessarily an attractor. This result is
used in [28–30].

In the rest of this section, we will tackle the more general and challenging case of non-
determinism. Indeed, in the general case, some local transitions may allow the dynam-
ics to escape the cycle; in such case, the cycle would not even be a trap domain (see
Lemma 4). For instance, in the partial state-transition graph of Figure 2, we can spot
many cycles of various lengths but not all of them are attractors. In particular, the ini-
tial global state is part of a cycle of length 2 which is not an attractor, and which trace is:
{〈a1, b2, c0, d1〉, 〈a1, b2, c0, d0〉}.

That is why another check is required to filter out all the remaining cycles that can be
escaped (and are therefore not attractors). Once again, this filtering is performed with con-
straints, which are the most suitable solution. In order to define such constraints, we need to
describe the behavior that we do not wish to observe: escaping the computed cycle. For this,
it is necessary to differentiate between the effectively played local transitions (played)
and the ”also playable” local transitions which were not played (alsoPlayable in
line 61). Then, we verify at each step S, comprised between 0 and n, if these also playable
local transitions make the system evolve or not to a new global state that is not a part of the
cycle trace.

For the asynchronous update scheme, any also playable local transition can potentially
make the dynamics leave the cycle. Regarding the synchronous update scheme, an also
playable local transition must necessarily be in-conflict (see Definition 6) with a local tran-
sition used to find the studied cycle. Nevertheless, both cases are tackled jointly. The pred-
icate alsoPlayable(T,S) states that a local transition T is also playable at step S in
the considered cycle, but was not used to specifically build the said cycle. This predicate is
similar to the predicate playable used previously in lines 30, 33 and 39.

60 % Compute the also playable transitions at step S
61 alsoPlayable(T,S) ← not unPlayable(T,S), not played(T,S), localTrans(T), step(S).

After finding these also playable local transitions in each state of the cycle, we have
to verify if all its global states, found by applying these also playable local transitions,
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are as well part of the cycle. Indeed, it is possible to have an also playable local transi-
tion that makes the dynamics evolve inside the cycle; this is witnessed by the predicate
evolveInCycle (lines 64–65). Such transitions are simply “shortcuts” to other states in
the same cycle. This is the case in complex attractors, that do not simply consist in a single
cycle but are made of a composition of cycles. Such global transitions are disregarded in
the current case as we are only interested in finding global transitions that would allow the
model dynamic to escape from the cycle. Instead, we are interested in filtering out cases
where a transition allows to exit the cycle (that is, leads to a state not featured in the trace
of the cycle) using the constraint of line 68.

62 % The transition T is also playable at S but makes the system evolve to
63 % an already visited state at step Si (i.e., it belongs to the trace)
64 evolveInCycle(T,S,Si) ← alsoPlayable(T,S), target(T,B,K),
65 active(level(B,K),Si), Si!=S+1, step(Si), 1={different(S,Si,_)}.
66 % Eliminate the answers where there is an also playable transition T that
67 % makes the system evolve to a new state outside of the cycle trace
68← alsoPlayable(T,S), not evolveInCycle(T,S,_).

Example 10 In the dynamics of the networks presented in Figure 1 with the asynchronous
update scheme, let us consider the following cycle of length 2, which can be seen in Fig-
ure 2: 〈a1, b2, c0, d1〉 →Uasyn 〈a1, b2, c0, d0〉 →Uasyn 〈a1, b2, c0, d1〉. Following the pieces of
program given in this section, one of the answer sets could allow to find this cycle, among
others, by returning in particular the following predicates:

active(level("a",1),0) active(level("b",2),0)
active(level("c",0),0) active(level("d",1),0)
active(level("a",1),1) active(level("b",2),1)
active(level("c",0),1) active(level("d",0),1)
active(level("a",1),2) active(level("b",2),2)
active(level("c",0),2) active(level("d",1),2)
played(11,0) played(9,1)
alsoPlayable(1,0) alsoPlayable(6,0)
alsoPlayable(1,1) alsoPlayable(6,1)
cycle(0,2)

The three states in the cycle are labeled 0, 1 and 2, and the active local states they contain
are described by the predicate active. We note that states 0 and 2 are identical, which
is witnessed by the atom cycle(0,2). Furthermore, predicate played give the two
transitions (labeled 9 and 11, see lines 18 and 20) allowing to run through all the states
of the cycle, while predicate alsoPlayable give the local transitions that are “also
playable” in the cycle; indeed, in both states, the transitions labeled 1 and 6 are playable.
Finally, no evolveInCycle predicate is inferred for this example (the only also playable
transition is 1 which makes the dynamics evolve outside the cycle). Thus, this answer set is
discarded thanks to the constraint of line 68 and is not featured among the results.

5.3 Complex Attractors
Up to this point, we managed to propose an ASP program that enumerates all the attractors
in a given AN. Each attractor is the trace of a path of length n. In many cases, except for
some complex attractors, this length n (which corresponds to the number of played global
transitions in the path) is also equal to the number of visited states (i.e., the size of the
trace). This is a trivial case of a minimal path covering a given attractor, that is, no path
of lesser length can cover it. Indeed, as in the examples of attractors in Figures 2 and 3,
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enumerating the paths of length 2 is enough to obtain all the attractors having two global
states, and the same goes for the attractors of length 4. But without the constraint that we
develop below (given in lines 70–93), when the program is asked to display the attractors
covered by a path of length n, it will also return various paths of size lower than n by
considering non-minimal paths, that is, containing unwanted repetitions inside the cycle,
or even repetitions of the entire cycle. In the example of Figure 3, for instance, with n = 6,
the program returns the two attractors, although they both are of size 2. Indeed, each of
them can be covered by a cycle of length 6: it consists of a cycle of size 2 repeated three
times.

Therefore, the objective of this section is to exclude most cases where a cycle is non-
minimal, such as the obvious one where it is entirely repeated, because such a case is
useless with respect to the computation of attractors. Moreover, we would prefer that our
method yields no answer set when no attractor traversed by a cycle of length n is found
(even if non-minimal attractors on cycles of lesser length are found). We don’t formally
claim here that our method eliminates all of these cases, but we aim at tackling most of
these cases in order to sanitize the answer set as much as possible. For instance, an attractor
ζ0 → ζ1 → ζ0 of length n = 2 could be listed among the attractors of length n = 4 if
it is repeated twice as the following path: ζ0 → ζ1 → ζ0 → ζ1 → ζ0. Although all
general assumptions regarding attractors are verified (it consists in a cycle and all the global
transitions produce global states that are still cycle), we aim at willingly excluding it from
the answers because it is not minimal in terms of length.

However, in the case of some complex attractors, the problem is opposite. Indeed, it
happens that the dynamics has to visit the same global states more than once. It is for
example the case for the complex attractor which could be called “star attractor”, which is
featured in the model comprising the following global transitions, also depicted in Figure 4:
{ζ0 → ζ1, ζ1 → ζ0, ζ1 → ζ2, ζ1 → ζ3, ζ2 → ζ1, ζ3 → ζ1}. The only attractor of this model
consists in the whole set S = {ζ0, ζ1, ζ2, ζ3} of all its global states. We notice that it is not
possible to cover this entire attractor without visiting the state ζ1 at least 3 times (even
when disregarding the inevitably repeated final step of the cycle). Indeed, a possible path
to cover it entirely is: ζ0 → ζ1 → ζ2 → ζ1 → ζ3 → ζ1 → ζ0 which is of length 6, and no
path of lesser length exist to cover this attractor although its trace is of size 4.

figures/starex.pdf

Figure 4 Simple example featuring a “star attractor”, that is, an attractor that cannot be traveled
without visiting at least twice one of its states.

The challenge here is to handle both cases in the same program: excluding answer sets
featuring non-minimal paths while still returning complex attractors for which the path is
strictly bigger than the trace. For this, we make direct use of the result of Lemma 1 which
links the length n of a path to the size X of its trace; in our case: X = n + 1 - k, where
k is the number of global states that are successively repeated in the path of length n (see
Definition 8). This formula is implemented in lines 70–76. It is also used to prompt the user
with the size of the attractor which may be strictly inferior to the value of n.

69 % State S1 is also visited at steps S2 and S3, such that: S1 < S3 < S2
70 existSameCycleInside(S1,S2) ← cycle(S1,S3), S1<S3, S3<S2, step(S1), step(S2).
71 % The first revisit of state S1 is at S2
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72 repeatedState(S1,S2) ← cycle(S1,S2), not existSameCycleInside(S1,S2), S1<S2.
73 % K is the number of repeated states among the n steps
74 getNbreRepeatedStates(K) ← K={repeatedState(_,_)}.
75 % X is the trace size of the current path of length n
76 traceSize(X) ← getNbreRepeatedStates(K), X=n+1-K.

Our objective in the following is to propose a program that returns, as far as possible,
all attractors of the model that actually correspond to a path of length n which is minimal.
We propose the following rules to verify this property; each of them concludes with the
atom isNotMinimal(n), which means that the considered cycle is not minimal. In the
end, isNotMinimal(n) is used in the constraint of line 93 which eliminates all these
unwanted cases together.

We first verify if there exists a path of length X < n without repetitions from the state of
step 0 to step X, where X is the trace size of the cycle, that is, the number of different states
in the path. Then we also verify if there is a transition from the state of step X to the state
of step 0. If both properties are true, then there exists a path of size X < n that covers
all the states of the attractor, and thus n is not the minimal path length of that attractor
(lines 81–84).

Another non-minimal case, detailed in lines 86–87, occurs when there exists “shortcuts”
between some states of a cycle, making it not minimal. Besides, a path of minimal length
does not permit repetitions between successive states inside a cycle (line 89). Finally, when
an entire cycle is repeated several times, then the number of repetitions is obviously supe-
rior to the maximum expected that is equal to n (line 91). As stated before, in any of the
previous cases, the considered cycle is not minimal, and therefore discarded (line 93).

77 % There are other cycles between S1 and S2
78 existCyclesInside(S1,S2) ← cycle(S,Sbis), S1<=S, S<=S2, S1<=Sbis, Sbis<=S2,
79 S!=Sbis, step(S1;S2).
80 % There exists a shorter path of size X visiting all the states
81 isNotMinimal(n) ← evolveInCycle(T,S,0), not existCyclesInside(0,S), S=X-1,
82 traceSize(X), X<n.
83 isNotMinimal(n) ← evolvedInCycle(T,0,S), S=X-1, not existCyclesInside(S,0),
84 traceSize(X), X<n.
85 % Linear attractor and all states can be reached by less than n transitions
86 isNotMinimal(n) ← evolveInCycle(T,S1,S2), not cycle(S1,_), not cycle(S2,_),
87 traceSize(X), X<n.
88 % No useless cycles between successive steps
89 isNotMinimal(n) ← cycle(S1,S2), cycle(S1+1,S2+1).
90 % No useless cycles inside the n-length cycle
91 isNotMinimal(n) ← getNbreRepeatedStates(Y), traceSize(X), Y>X.
92 % n is not the minimal length to display this attractor
93← isNotMinimal(n).

We note that these constraints are relevant to the non-deterministic dynamics, whether it is
asynchronous or synchronous.

Nevertheless, there is still a case of duplicate results that cannot be tackled by the previ-
ous constraint: the existence of several minimal cycles for the same attractor. Indeed, for
one given attractor, it is possible to find several minimal covering cycles by changing the
initial state, or the traversal (in the case of complex attractors). For instance, the hypotheti-
cal attractor {ζ0; ζ1} is captured by the two cycles: ζ0 → ζ1 → ζ0 and ζ1 → ζ0 → ζ1. This
leads to repetitions which are not removed from the answers of our method.

The final result presented by each answer set is described by the collection of atoms
active(ALs,S), where S denotes the label of one of the steps in the cycle, and ALs

corresponds to one of the active local states.
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The problem of finding attractors in a discrete network is NP-hard, therefore the imple-
mentation that we gave in this section also faces such a complexity. However, ASP solvers
(namely, CLINGO in our case) are specialized in tackling such complex problems. Next
section will be dedicated to the results of several computational experiments that we per-
formed on biological networks. We show that our ASP implementation can return results
in only a few seconds attractors of small size even on models with 100 components, which
is considered large.

6 Results
In this section, we exhibit several experiments conducted on biological networks. We first
detail the results of our programs on the AN model of Figure 1. Then, we sum up the
results of benchmarks performed on other models up to 100 components. In general, the
time performances are good and the overall results confirm the applicability ASP for the
verification of formal properties or the enumeration of special constructs on biological
systems.

All experiments were run on a desktop PC with a Pentium VII 3 GHz processor and 16
GB memory.

6.1 Case Study
We first conducted detailed experiments on the 4-components model of Figure 1. As de-
tailed in Section 2.1, this network contains 4 automata and 12 local transitions. Its state-
transition graph comprises 36 different global states and some of them are detailed in the
partial state-transition graphs in Figure 2 (for the asynchronous update scheme) and Fig-
ure 3 (for the synchronous update scheme).

The analytic study of the minimal trap domains on this small network allows to find the
following attractors and fixed points depending on the update scheme, where we assimilate
steady states to attractors of length n = 0 because they have a trace of size 1:
• Asynchronous update scheme:

– n = 0: 〈a1, b1, c1, d0〉,〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉;
– n = 2: {〈a0, b1, c0, d0〉, 〈a0, b1, c0, d2〉};
– n = 4: {〈a1, b2, c1, d1〉, 〈a0, b2, c1, d1〉, 〈a0, b2, c1, d0〉, 〈a1, b2, c1, d0〉}.

• Synchronous update scheme:
– n = 0: 〈a1, b1, c1, d0〉,〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉;
– n = 2: {〈a0, b1, c0, d0〉, 〈a0, b1, c0, d2〉} and {〈a1, b2, c1, d1〉, 〈a0, b2, c1, d0〉}.

The steady states returned by the method of Section 4 (n = 0) and the attractors (n > 1)
given by the method of Section 5 are consistent with what is theoretically expected. We note
that, as stated in [24], the fixed points are the same for the asynchronous and synchronous
update schemes.

When given to a solver, the ASP programs given in the previous sections directly outputs
the expected solutions. The output for the fixed point enumeration was given in Example 9.
The output for the attractor enumeration is given below for both update schemes. We note
that each global that state belongs to an attractor is labeled with a number (for instance,
0 and 1 for the cases n = 2) so that each active local state is featured in an independent
atom. We removed some uninteresting atoms from the results to improve readability.

--- Asynchronous n=2: ---
Answer: 1
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active(level("a",0),0) active(level("b",1),0) active(level("c",0),0)
active(level("d",0),0) active(level("a",0),1) active(level("b",1),1)
active(level("c",0),1) active(level("d",2),1) traceSize(2) cycle(0,2)

--- Asynchronous n=4: ---
Answer: 1
active(level("a",1),0) active(level("b",2),0) active(level("c",1),0)
active(level("d",1),0) active(level("a",0),1) active(level("b",2),1)
active(level("c",1),1) active(level("d",1),1) active(level("a",0),2)
active(level("b",2),2) active(level("c",1),2) active(level("d",0),2)
active(level("a",0),3) active(level("b",0),3) active(level("c",0),3)
active(level("d",1),3) traceSize(4) cycle(0,4)

--- Synchronous n=2: ---
Answer: 1
active(level("a",0),0) active(level("b",1),0) active(level("c",0),0)
active(level("d",0),0) active(level("a",0),1) active(level("b",1),1)
active(level("c",0),1) active(level("d",2),1) traceSize(2) cycle(0,2)
Answer: 2
active(level("a",1),0) active(level("b",2),0) active(level("c",1),0)
active(level("d",1),0) active(level("a",0),1) active(level("b",2),1)
active(level("c",1),1) active(level("d",0),1) traceSize(2) cycle(0,2)

Moreover, executing the programs with n 6= 2 and n 6= 4 returns no results, which means
that the solver correctly terminates having found no answer set. This is expected because
there is no attractor of length different than 2 and 4 for this model, and we excluded repeated
cycles from the results (therefore, the attractors already found for lengths 2 and 4 are not
found for n = 6 or n = 8, for instance). For this small network, all the results are computed
in less than 0.05 second.

6.2 Benchmarks
In the following, we propose some additional benchmarks to demonstrate the capabilities
of our implementation. We do not give the details of the results of these experiments but
rather focus on the computation times and the conclusion: if an attractor has been found
(satisfiable) or not (unsatisfiable). We used several preexisting Boolean and multi-valued
networks inspired from real organisms and found in the literature:
• Lambda phage: a regulatory network featuring some viral genes crucial in the de-

cision between lysis and lysogenization in temperate bacteriophage lambda [31];
• Trp-reg: a qualitative model of regulated metabolic pathways of the tryptophan

biosynthesis in E. coli [32];
• Fission-yeast: a cell cycle model of Schizosaccharomyces Pombe [33];
• Mamm: a mammalian cell cycle model [34];
• Tcrsig: a signaling and regulatory network of the TCR signaling pathway in the

mammalian differentiation [35];
• FGF: a drosophila FGF signaling pathway [36];
• T-helper: a model of the T-helper cells differentiation and plasticity, which accounts

for novel cellular subtypes [37].
To obtain the models that we have studied in this section, we first extracted them from
the GINSIM model repository[3] [38], in GINML format. These models correspond to the
discrete asynchronous networks given in the corresponding papers. Then, the conversion
step towards an ASP program is automated using the following tools:
• The existing GINSIM tool allows to export its models into the SBML qual formalism;

[3]http://ginsim.org/models_repository
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• The existing LOGICALMODEL library [39, 40] can convert SBML qual models into
AN models;

• Finally, our script AN2ASP converts AN models into ASP programs, following the
principles detailed in Section 4.1.

It is noteworthy that each step fully preserves the dynamics between models regarding the
asynchronous update scheme [41]; thus, the final (asynchronous) ASP program is bisimilar
to the original GINML model. The characteristics of each model once translated in AN are
given in Table 1. The results of our benchmarks[4] are given in Tables 2 and 3.

Models Model description
|Σ| maxa∈Σ{|Sa|} |T | |S|

Example 4 3 12 36
[31] Lambda phage 4 4 46 48
[32] Trp-reg 4 3 14 36
[33] Fission-yeast 9 3 43 3 × 29 = 1,536
[34] Mamm. 10 2 34 210 = 1,024
[35] Tcrsig 40 2 85 240 ' 1012

[36] FGF 59 3 102 231 ' 1.2 × 1010

[37] T-helper 101 3 316 2102 ' 5.7 × 1031

Table 1 Brief description of the models used in our benchmarks. The successive lines sum up the
information regarding the models of, respectively, the toy example of Figure 1, the bacteriophage
lambda [31], the tryptophan biosynthesis in E.coli. regression [32], the fission yeast [33], the
mammilian cell cycle [34], the TCR signalling pathway in the mammalian differentiation [35], the
drosophila FGF signalling pathway [36] and the T-helper cell differentiation [37]. For each of them, the
table gives the number of automata (|Σ|), the maximal local level in the automata (maxa∈Σ{|Sa|}), the
number of local transitions (|T |) and the number of states in the corresponding state-transition graph
(|S|).

Models
Fixed points enumeration
for both update schemes
∆allt (ms) #allF

Example 2 3
Lambda phage 4 1
Trp-reg 6 2
Fission-yeast 5 1
Mamm. 3 1
Tcrsig 5 8
FGF 25 1,536
T-helper 170,642 5,875,504

Table 2 Results of our fixed points enumeration implementation. The successive lines sum up the
information regarding models detailed in Table 1. For each model, the table shows the computation
time for the enumeration of all results and the total number of returned answer sets.

We note that all the results for the fixed points search have been compared and confirmed
using GINSIM [38] and PINT [39]. Regarding the attractor enumeration, we compared our
results with BNS (Boolean Network System) [16] for the synchronous update scheme on
the Fission-yeast, Mamm., and Tcrsig models; and with GINSIM [38] for the asynchronous
update scheme on the Lambda phage, Trp-reg, Fission-yeast and Mamm. models. In all
cases, we found the same results. It is interesting to note that our method allows to return
a response regarding attractors of small size even on big models. In contrast, other tools
may take a very long time or even fail to answer. For instance, that happens with GINSIM

[4]All programs and benchmarks are available as additional files and at http://www.irccyn.ec-nantes.
fr/˜benabdal/attractors.zip
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for the Tcrsig, FGF and T-helper models. Indeed, they are based on the computation of the
complete transition graph even for the study of small attractors.

Our results could not be compared with, for example, the existing ASP-G method [17].
Indeed, with this tool, the user has to choose an update rule on which the dynamic evolution
will be based on. For instance, one rule consists in activating a gene when at least one of
its activators is active while no inhibitor is; another one activates a gene when it has more
expressed activators than inhibitors. Because the chosen activation rule is applied for all
the components of the model, while the evolution rules in our AN semantics are specific to
each component, the results of both tools cannot be strictly compared.

We recall that among the results output, some attractors may be listed several times in
the answers, despite any filtering, as explained at the end of Section 5.3. Indeed, the solver
returns different answer sets for different paths that cover the same trace but differ in terms
of initial global state. Therefore, in the results of Table 3, we focused on the conclusion
and computation times of the search of any first found attractor of length n.

In case the user may need the exhaustive list of all attractors, our method can also list
all the answers, including these repetitions. For instance, our method yields 4 answers for
the Trp-reg model and a cycle length of n = 4 with the asynchronous update scheme, and
the computation takes 47 milliseconds; this typically represents an attractor of size 4 where
each answer set represents a cycle starting from a different initial state. Regarding the T-
helper model (the largest studied model with 101 automata), the search for all attractors of
size n = 2 with the synchronous update scheme takes about 275 seconds (∼ 5 minutes)
and returns 2,058,272 answers, while it takes only 57 seconds to return all the attractors
of size n=12, (6,144 answers). However, as explained before, these results mean that this
model features strictly less than, for instance, 6,144 attractors covered by a cycle of length
12, because each one is repeated several times.

In order to filter out the remaining repetitions, it should be possible to use a script or a
text editor in order to extract only the states of each answer set and thus discard the answers
featuring exactly the same attractor. Such pruning is not trivial in ASP and is the target of
future works.

7 Conclusion and Future Direction
In this paper, we presented a new logical approach to efficiently compute the list of all fixed
points and attractors in biological regulatory networks. We formalized our approach using
the AN framework, which is bisimilar to many logical networks [41]. All results given here
can thus be applied to the widespread Thomas’ modeling [42] in the asynchronous scheme
and to the Kauffman modeling in the synchronous scheme [43]. In addition, this framework
can encompass any update rules, such as the ones represented in [44, 45].

We designed a dedicated method for computing steady states and other programs for
non-unitary attractors of a given length and a chosen update scheme (synchronous or asyn-
chronous). The originality of our work consists in the exhaustive enumeration of all attrac-
tors thanks to the use of ASP, a powerful declarative programming paradigm. The compu-
tational framework is based on the AN formalism presuming non-deterministic dynamics.
Thanks to the encoding we introduced, and the powerful heuristics developed in modern
solvers, we are able to tackle the enumeration of fixed points, cycles and attractors of large
models. The major benefit of a such method is to get an exhaustive enumeration of all
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Models
Attractors enumeration

asynchronous scheme synchronous scheme
n ∆t (ms) ∃?A ∆t (ms) ∃?A

Example
2 7 yes 7 yes
4 16 yes 14 no
8 98 no 75 no

Lambda
phage

2 14 yes 14 yes
10 1,352 no 842 no
20 15,656 no 14,452 no

Trp-reg
2 8 no 7 no
4 14 yes 15 no

20 3,908 no 3,808 no

Fission-
yeast

2 16 no 16 yes
10 1,011 no 807 no
20 17,302 no 16,313 no

Mamm. 2 12 no 12 no
7 177 no 147 yes

10 720 no 605 no
20 58,133 no 9,253 no

Tcrsig 2 26 no 25 no
6 353 no 288 yes

10 2,420 no 1,841 no
20 85,599 no 27,078 no

FGF 2 38 no 36 no
10 2,080 no 1,953 no
20 30,861 no 29,838 no

T-helper 2 180 no 125 yes
3 391 no 301 yes
4 782 no 1,064 no
6 4,271 no 2,372 yes
7 7,909 no 3,522 yes
9 26,443 no 7,042 yes

10 44,924 no 12,208 yes
12 107,358 no 28,520 yes
20 4,230,836 ∼ 1h17 no 187,105 ∼ 3min no

Table 3 Results of our attractors enumeration implementation. The successive lines sum up the
information regarding models detailed in Table 1. For each model and for both update schemes
(asynchronous and synchronous), the table shows, depending on the given path length n, the
computation time for the first attractor found by the solver (∆t), and the conclusion regarding the
existence or not of at least one attractor (∃?A).

potential states while still being tractable for models with a hundred of interacting compo-
nents. As the identification of attractors can give an insight to the long-term behavior of
biological systems, tackling this issue is a challenge to which we cared to contribute to.
Besides, we hope our work helps open new ways and tools to explore this field.

We plan to extend this work by considering adaptations and optimizations of the approach
to address larger models. First, the “projection” feature of CLINGO which displays only
one answer set when several answer sets contain common predicates, is currently studied
in order to filter out repeated attractors, that currently appear multiple times because they
are covered by several possible cycles. Another trail consists in returning approximations
of the results, that is, sometimes “missing” some answers, but with the benefit of a highly
improved performance. Once again, applying various filters to the generated results may
avoid redundancy and guide the solving process. Conversely, it may be possible to reduce
the incremental aspect of the analysis process, for instance by searching for cycles of size



Ben Abdallah et al. Page 28 of 31

lower than (and not only equal to) a given value, so that the user could directly start with
higher values.

Of course, other extensions allowing to tackle other close problems would be of interest.
For instance, the attractor inverse problem consists in building or enumerating networks
possessing a given set of attractor properties, in order to answer to network inference mat-
ters. We would also like to extend these ASP-based methods to study other interesting
properties of dynamical patterns such as the enumeration of basins of attraction, gardens
of Eden or bifurcations [46].
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7271, 2000, route des Lucioles, 06900 Nice, France. 4National Institute of Informatics, 2-1-2, Hitotsubashi,
Chiyoda-ku, 101-8430 Tokyo, Japan.

References
1. Wuensche, A.: Genomic regulation modeled as a network with basins of attraction. In: Pacific Symposium on

Biocomputing, vol. 3, pp. 89–102 (1998)
2. Huang, S., Eichler, G., Bar-Yam, Y., Ingber, D.E.: Cell fates as high-dimensional attractor states of a complex

gene regulatory network. Physical review letters 94(12), 128701 (2005)
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46. Fippo-Fittime, L., Roux, O., Guziolowski, C., Paulevé, L.: Identification of bifurcations in biological regulatory
networks using answer-set programming. In: Constraint-Based Methods for Bioinformatics Workshop (2016)

List of Figures
1 An example of an AN model with 4 automata: a, b, c and d. Each box

represents an automaton (modeling a biological component), circles rep-
resent their local states (corresponding to their discrete expression levels)
and the local transitions are represented by arrows labeled by their neces-
sary conditions (consisting of a set of local states from other automata).
The automata a and c are either at level 0 or 1, and b and d have 3 levels (0,
1 and 2). The grayed local states stand for the network state 〈a0, b1, c1, d0〉. 5

2 A part of the state-transition graph of the AN given in Figure 1 for the asyn-
chronous update scheme, computed from the initial state: 〈a1, b2, c0, d1〉
until reaching attractors. We can observe three fixed points: 〈a1, b1, c1, d0〉,
〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉; an attractor of size 2: {〈a0, b1, c0, d0〉,
〈a0, b1, c0, d2〉} (in blue) and an attractor of size 4: {〈a1, b2, c1, d1〉,
〈a0, b2, c1, d1〉, 〈a0, b2, c1, d0〉, 〈a1, b2, c1, d0〉} (in yellow). . . . . . . . . . 12

3 A part of the state-transition graph of the AN given in Figure 1 for the
synchronous update scheme, computed from several initial states, such
as 〈a1, b2, c0, d1〉, until reaching attractors. It features non-deterministic
global transitions, depicted by the two red arrows. We can observe the same
three fixed points than for the asynchronous update scheme of Figure 2, but
instead two attractors of size 2: {〈a0, b1, c0, d0〉, 〈a0, b1, c0, d2〉} (in blue)
and {〈a1, b2, c1, d1〉, 〈a0, b2, c1, d0〉} (in gray). . . . . . . . . . . . . . . . 12

4 Simple example featuring a “star attractor”, that is, an attractor that cannot
be traveled without visiting at least twice one of its states. . . . . . . . . . 21

List of Tables
1 Brief description of the models used in our benchmarks. The successive

lines sum up the information regarding the models of, respectively, the
toy example of Figure 1, the bacteriophage lambda [31], the tryptophan
biosynthesis in E.coli. regression [32], the fission yeast [33], the mammil-
ian cell cycle [34], the TCR signalling pathway in the mammalian differen-
tiation [35], the drosophila FGF signalling pathway [36] and the T-helper
cell differentiation [37]. For each of them, the table gives the number of
automata (|Σ|), the maximal local level in the automata (maxa∈Σ{|Sa|}),
the number of local transitions (|T |) and the number of states in the corre-
sponding state-transition graph (|S|). . . . . . . . . . . . . . . . . . . . . 25

2 Results of our fixed points enumeration implementation. The successive
lines sum up the information regarding models detailed in Table 1. For
each model, the table shows the computation time for the enumeration of
all results and the total number of returned answer sets. . . . . . . . . . . . 25



Ben Abdallah et al. Page 31 of 31

3 Results of our attractors enumeration implementation. The successive lines
sum up the information regarding models detailed in Table 1. For each
model and for both update schemes (asynchronous and synchronous), the
table shows, depending on the given path length n, the computation time
for the first attractor found by the solver (∆t), and the conclusion regarding
the existence or not of at least one attractor (∃?A). . . . . . . . . . . . . . 27


