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Abstract. The functioning of marine ecosystems depends on key pro-
cesses such as climate regulation and water quality. Phytoplankton, uni-
cellular microalgae at the base of marine food webs, play a central role in
these dynamics that are threatened by global change. Although abiotic
factors (e.g., temperature) are well studied, biotic interactions (i.e., be-
tween species) are poorly understood. Classical machine learning models,
while effective at prediction, often operate as black boxes and provide
limited biological interpretability. Meanwhile, symbolic and qualitative
modeling approaches, which could offer greater explanatory power, re-
main largely underused in marine ecology. To address this gap, we inves-
tigate phytoplankton interactions using an explainable machine learning
method, LFIT (Learning From Interpretation Transitions), which infers
logical rules from observational time series data. Adapting this frame-
work required methodological contributions, notably a species-specific
discretization strategy informed by ecological theory. The extracted rules
enable the construction of an interaction graph, where edges represent
probable interspecies interactions. This graph offers an interpretable rep-
resentation of the dynamics of the community and helps identify key
drivers of the development of phytoplankton.

Keywords: Marine Ecology - Explainable Machine Learning - Symbolic
Learning - interaction Graphs - Network Inference - Data Discretization.

1 Introduction

Marine ecosystems are complex adaptive systems shaped by physical, chemical,
and biological interactions. At the base of these ecosystems lie phytoplankton
communities, whose dynamics drive primary production, biogeochemical cycling,
and trophic networks [7I33]. Understanding and predicting phytoplankton dy-
namics is therefore critical for both ecological science and practical challenges
such as monitoring harmful algal blooms and coastal water quality, anticipat-
ing climate change and tracking climate-driven biodiversity shifts [24122]. While
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the role of abiotic factors (such as temperature, light, and nutrients) is well
studied [8J6], recent studies suggest that biotic interactions (i.e., interactions
between species) also play a major role in structuring phytoplankton commu-
nities [2TJ26/16]. These interactions, however, remain poorly characterized, in
part due to the difficulty of disentangling them from environmental effects in
observational data [26].

Studying phytoplankton communities has been already performed using ODE
systems, but they usually require the identification of a lot of parameters and
fine-tuning. Statistical machine learning methods, often described as “black boxes”,
offer predictive models but at the cost of explainability. When understanding the
drivers of interspecies interactions is crucial for interpretation and management,
this lack of transparency is a significant limitation. To address it, explainable
artificial intelligence (XAI) has emerged as a bridge between interpretability and
predictive modeling. Here, we propose a symbolic and explainable modeling ap-
proach based on Learning From Interpretation Transitions (LFIT) [18], which
infers human-readable logical rules from time-series data.

As phytoplankton community structure (abundance per species) indicates
rapid change in the functioning of ecosystems, long-term monitoring networks
(>30 years) were implemented in some coastal environments at bi-weekly fre-
quencies in the framework of European marine water directives and French mon-
itoring networks [32/24]. We apply the LFIT framework to this multi-decadal,
species-level records across several coastal locations in the north of France. This
dataset offer a realistic and ecologically meaningful testbed for interaction mod-
eling. Our goal is to extract logical rules that describe interspecies interactions
(while accounting for abiotic effects) and use them to construct a directed,
weighted interaction graph. Such a graph provides a compact and interpretable
summary of the full logic program, which may be long and difficult for domain
experts to interpret directly.

Our method builds on recent advances in explainable AT and Boolean network
inference in ecology [28/3]. We incorporate species-specific discretization strate-
gies informed by ecological knowledge to ensure biologically meaningful input
representations. Unlike black-box models, our approach produces symbolic rules
that are both data-driven and interpretable.

In addition to modeling phytoplankton dynamics, a key goal of this study is
to provide a general framework that is modular and applicable to a broad range
of ecological time series involving species abundance (number of individuals per
water volume) or presence-absence data.

Our main contributions are the following:

— We develop a species-specific discretization strategy tailored for symbolic
learning from ecological data.

— We apply LFIT to long-term phytoplankton time series to infer interspecies
interaction rules.

— We construct a signed and weighted interaction graph from the extracted
rules, using support and confidence to quantify interaction strength.
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We provide source code for all the steps of our approach under the form of
Python notebooks available online at: https://zenodo.org/records/15389109.

The rest of this paper is organized as follows: Section [2] reviews related
work on ecological modeling and symbolic learning. Section [3| describes the data
sources, preprocessing steps and the species-specific discretization. Section [4] de-
tails the symbolic learning framework and interaction graph construction. Sec-
tion [f] presents our results and interpretations. We discuss limitations and con-
clude in Section [6] with prospects for future work.

2 Background and Related Work

2.1 Modeling Approaches in Marine Ecosystems

Various modeling approaches have been used to study phytoplankton dynamics.
Ecosystem models (systems of ordinary differential equations based on reaction
networks) are constructed to predict the responses of marine ecosystems to global
changes. They typically account for the interplay between nutrients, phytoplank-
ton, zooplankton and detritus (also called NPZD models) depending on temper-
ature, light, hydrodynamics and some other abiotic components, but largely
simplify planktonic biodiversity to a few functional groups (a set of species with
similar characteristics) and translate biotic interactions only through the lens of
predation or competitive exclusion [T4JT95]. Facilitation [9] or allelopathy [35]
are other known mechanisms of biotic interaction that are difficult to evidence
from field approaches or experiments.

These models are theory-driven and interpretable but require strong assump-
tions and detailed parameterization, which can limit their applicability to real-
world ecosystems showing high biodiversity. Although intensively used to predict
the effects of climate change for example (they are included in earth system and
climate models used by the GIEC for predictions of global temperature increase,
see for example [23]), these models are in reality of poor predictive power of
changes in the phytoplankton community structure and therefore of the future
functioning of marine ecosystems. Models of “infinite biodiversity” [IITTI5], i.e.
NPZD models with more than 30 phytoplankton species, were developed so far
to understand how phytoplankton community will change under the climate
induced alterations of oceanic conditions. Parametrization of such models is ide-
alized by using size of the phytoplanktonic cells as a driver of all parameters.
They are used for theoretical questions in ecology, not for practical ones.

Statistical models (e.g., GLMs, GAMs, multivariate analysis and niche mod-
els) offer flexibility for analyzing species—environment relationships but often
struggle with nonlinearities and high-dimensional data [I0/26]. More recently,
trait-based ecological modeling has offered an alternative perspective: instead
of focusing on species identity alone, models focus on functional traits that in-
teraction species’ responses to their environment (e.g., thermal tolerance range,
cell size [7]). This framework has been used to delineate the realized niches of
phytoplankton taxa, that is, the set of environmental conditions under which
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these taxa are actually observed to persist, taking into account both abiotic
(non-living) and biotic (living) factors [20022J10]. Trait-based modeling has sup-
ported recent large-scale analyses of community composition and shifts in French
coastal waters [22]24]. Although these methods have highlighted the global im-
portance of biotic interactions in population dynamics, it is unable to precisely
characterize them individually.

More recently, machine learning methods have increasingly been used for
ecological forecasting and pattern discovery from high-dimensional time series
[26/4]. These models can capture nonlinear relationships and scale well with data,
but they generally lack interpretability, making it difficult to extract mechanistic
insights or generate ecological hypotheses. This is particularly limiting in marine
ecology, where the identification of biotic interactions and feedbacks is essential
for understanding community dynamics.

2.2 Symbolic and Constraint-Based Networks Inference

To overcome the limitations of black-box models, recent research has explored
symbolic and logic-based methods for inferring interaction networks directly from
observational data. These approaches aim to extract interpretable models encom-
passing the structure of the system, often under formal guarantees of consistency
with observed dynamics.

CASPO (Cell ASP Optimizer) employs ASP to explore logical models con-
sistent with perturbation-based experimental data, particularly in signaling net-
works [I5]. It uses formal reasoning to identify minimal models that reproduce
observed behavior, but its reliance on perturbation data prevents its application
to natural ecological systems. MIIC (Multivariate Information-based Inductive
Causation) is an information-theoretic method that reconstructs causal networks
from multivariate observational data by combining conditional mutual informa-
tion with constraint-based structure learning [34]. It introduced a feature to
learn from time-series data only very recently, and this was applied to live-cell
imaging data [3I]. To our knowledge, these methods have not been applied to
ecological data.

BoNesis [3] infers Boolean network models using Answer-Set Programming
(ASP). It integrates prior knowledge, under the form of a prior knowledge net-
work, with dynamical constraints, which can be derived from observed transi-
tions. BoNesis explores the full set of Boolean networks that are consistent with
these structural and dynamical constraints. It supports reasoning under uncer-
tainty by producing ensembles of models that might be large and often requires
additional assumptions to reduce ambiguity. The viability of this approach was
demonstrated for biological networks, showing that it can generate minimal mod-
els compatible with observational constraints [2], and even more specifically for
ecological networks inference from observational data [28]. Nevertheless, since
this method requires a prior knowledge network, which is not available for biotic
phytoplankton interactions, this method is not applicable to our work.

Qualitative symbolic frameworks, such as ASP-based modeling, are well suited
to ecological applications, as they integrate domain knowledge, handle discrete
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and noisy time series, and support reasoning under uncertainty [I3U12]. These
features are particularly relevant in planktonic systems, where both data sparsity
and process complexity are prevalent. Our approach builds on this line of work
by combining symbolic learning with a species-specific discretization strategy to
generate interpretable interaction rules directly from real-world ecological data.

2.3 Qualitative and Explainable Approach: Learning from
Interpretation Transitions (LFIT)

Among symbolic learning techniques, the Learning From Interpretation Transi-
tions (LFIT) framework, originally introduced by Inoue et al. [I8], has shown par-
ticular promise in inferring discrete dynamical systems from observational data.
LFIT has been especially applied to Boolean networks and cellular automata [I8§],
robotics [25], customer journey mapping [27]. It is particularly suited for biologi-
cal systems, as they naturally accommodate asynchronous and non-deterministic
dynamics—features common in gene regulation, signaling pathways, and ecolog-
ical communities [29/T8].

The LFIT framework takes as input a set of dynamical transitions, that is,
pairs of states so that the system has been observed evolving from the first to the
second. Such transitions can be simply extracted from a state graph or from time
series observations, as in our case (see Figure [2[ in Appendix). The framework
performs logic rule refinement in order to output a set of logic rules that describe
the local conditions on a variable to change its state.

To perform rule learning with LFIT, the main algorithm is GULA (Gen-
eral Usage LFIT Algorithm) by Ribeiro et al. [29]. GULA is a complete and
sound learning algorithm that supports memory-less semantics and produces all
minimal rules that explain the transitions. However, it suffers from exponential
complexity, which limits its scalability to systems with a very low number of
variables, typically less than 15. Since our model contains 66 variables variables,
this algorithm cannot be used.

The scalability of LFIT was significantly improved by the PRIDE algo-
rithm [30], which offers a polynomial-time learning approach by trading com-
pleteness for tractability. PRIDE is particularly suitable for applications in large
or complex ecological systems, at the cost of potentially missing some explana-
tions. What explanations are prioritized is given by an ordered list of variables
given to PRIDE: the variables appearing first are considered first to construct
the logical rules and might be strongly overrepresented compared to the last
variables. This requires comparing several runs with different orderings for a
complete view of the results.

A prior attempt to apply symbolic learning to ecological systems was pro-
posed by Iken et al. [I7], who explored the use of LFIT for rule extraction in
a phytoplankton context. Their work introduced heuristics for rule simplifica-
tion and interaction graph construction but remained preliminary and limited
in scope. In this paper, we extend that direction by applying a refined LFIT-
based framework, incorporating species-specific discretization and validating the
output through ecological interpretation and interaction graph analysis.
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In this context, our work leverages symbolic learning to generate interpretable
interaction graphs from phytoplankton time-series data. By incorporating expert-
informed discretization and formal rule extraction, we aim to provide biologically
grounded representations of interspecies dynamics in coastal ecosystems.

3 Data and Discretization

3.1 Ecological Dataset

This study is based on long-term phytoplankton monitoring data from the SRN
program (Regional Observation and Monitoring Program for Phytoplankton and
Hydrology in the eastern English Channel [32]24]). The dataset comprises time
series of environmental measurements and species-level phytoplankton counts
sampled approximately every 15-30 days from 1992 to 2020 along the eastern
English Channel coast, with a particular focus on the Boulogne-sur-Mer coastal
station. We consider only surface-level observations and restrict our analysis to
12 phytoplankton species and 11 abiotic factors that are both commonly available
and ecologically meaningful, following the selection in [20]. These 12 species were
thus chosen due to their ecological relevance, and consistent measures.

The biotic variables consist of species-level abundance, expressed as cell
counts, and represent macro-level community structure rather than biomass.
The selected species include key diatoms such as Chaetoceros danicus, Guinar-
dia delicatula, Skeletonema, and Pseudo-nitzschia seriata, among others, as well
as representatives of prymnesiophytes, notably Phaeocystis.

The abiotic variables considered are: temperature (TEMP), salinity (SALI),
nitrite (NOg), nitrate (NO3), ammonia (NHy), phosphate (POy), silanol (Si(OH)4),
turbidity (TURB), and other light-related proxies such as organic and inorganic
suspended matter (MESORG, MESINORG). These variables were selected for
their known interaction on phytoplankton dynamics, supported by ecological
literature and theoretical growth models [S/19].

To accommodate irregular sampling and missing values, we resampled the
data to a uniform monthly time step and used linear interpolation to impute
missing measurements. While imputation inevitably introduces some uncertainty,
this approach preserves the temporal structure needed for state transition learn-
ing.

Before applying symbolic learning, we performed a preliminary analysis to
assess whether including other species as predictors improves the ability to model
the dynamics of a target species. This approach, inspired by previous work on
data-driven interaction inference [26], quantifies how much additional variance
can be explained when biotic variables are included alongside abiotic factors. For
each species in our dataset, we trained two random forest models: one using only
abiotic variables, and one including both abiotic and species abundance variables.
We report the resulting R? scores in Table [1] in Appendix. The coefficient of
determination R? measures the proportion of variance in the target variable
that is explained by the model. An R? of 1 indicates perfect prediction, while
an R? of 0 means the model performs no better than the mean.
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In nearly all cases, including species variables led to improved predictive per-
formance, suggesting that interspecies influences play a significant role in shaping
community dynamics. Note that in complex ecological systems, low R? values
are common due to noise and unmeasured variables. Here, even modest improve-
ments support the presence of informative structure in the data, especially for
large datasets. These results support the hypothesis that species interactions
are embedded in the observational data and justify the use of an explainable
learning framework to characterize them.

3.2 Discretization Strategy

LFIT requires all variables to be expressed in discrete states. For species abun-
dance, we convert the time series into Boolean values (presence/absence) using
a quantile-based discretization: values above a defined threshold are assigned 1
(presence), the rest 0.

For abiotic variables related to temperature and nutrients, we apply a species-
specific discretization strategy informed by theoretical growth models. Each abi-
otic variable is duplicated per species (e.g., T,, Ty, etc.) and discretized according
to that species’ theoretical physiological response. This enables the learning al-
gorithm to consider the same environmental condition differently for different
species.

We rely on known functional forms—such as Arrhenius-type responses for
temperature and Michaelis-Menten kinetics for nutrients [7lI}—and align them
with empirical species presence distributions to validate the relevance of the
thresholds.

Temperature Effect. Temperature response is modeled using a Gaussian
growth curve specific to each species [8]:

(T - Topt)Q)

52 (in days™1)
o

ftemp(T) = exp <_
This captures unimodal thermal responses around a species-specific optimal tem-
perature T,y with tolerance o. Thresholds for Boolean discretization are chosen
as 1 standard deviation around 7,y, defining the range of favorable conditions
with assigned value 1. Outside this range, values are assigned 0. Figure [L(a)|
shows this alongside observed presence rates.

The species occurrences distribution (presence rate per unit of temperature)
is used to verify that the theoretical bins align with observed patterns. Presence
rates in the dataset are not expected to fit the theoretical growth potential.
The theoretical growth represents the species’ growth potential under otherwise
optimal conditions (normalized number of individuals per time unit) while the
presence rate of the species gives the number of observations featuring the pres-
ence of the species above a certain threshold for a given temperature. Although
it is expected that presence rates are higher when the theoretical growth rate
is high, in practice, presence rates are lower than what one could expect due to
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additional limiting factors—such as other environmental constraints and inter-
species interactions—as well as natural fluctuations of temperature over time.

Nutrient Limitation. Nutrients (i.e., NOg, NO3, NHy, PO, and Si(OH),4) are
modeled using a Michaelis-Menten function:

[X]

fx([X]) = X]+ Kx

(dimensionless) (1)
where [X] is the concentration of the nutrient and Kx its half-saturation con-
stant.

For three nutrient variables deemed the most important, namely NO3, NH,
and POy, discretization thresholds were defined based on their respective half-
saturation constants (K y). Figure shows this applied to nitrate (NO3) for
Phaeocystis. These constants represent the nutrient concentration at which the
growth rate reaches half its maximum value and are widely used in ecological
models to characterize nutrient limitation [I].
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Fig. 1. Theoretical responses to abiotic factors (black lines) vs. observed presence rate
of species (gray bars) for Phaeocystis. Dashed lines indicate discretization thresholds.

The distribution of species occurrences for temperature shows a closer align-
ment with the theoretical growth function than for nutrient variables. This is
consistent with the strong thermal sensitivity of phytoplankton species, which
exhibit narrow optimal temperature ranges and sharp declines outside of those
conditions [8I33]. In contrast, nutrient uptake responses are generally more flex-
ible.
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To sum up, our model encompasses 66 variables: 12 phytoplankton species, 4
abiotic factors (temperature and 3 nutrients) duplicated into as many variables
as there are species, and the remaining 6 abiotic factors.

4 Interaction Graph Extraction from LFIT program

4.1 Rule inference with LFIT
The rules inferred by LFIT form a logic program (called Dynamical Multi- Valued
Logic Program, or DMVLP in [29]) where each rule r has the general form:

(' = wal) + (v} = wvaly) A (vl = valy) A -+ A (V% = valy,) (2)

m

Such a rule means that variable v will take value val at time ¢ + 1 (left hand
side, denoted head(r)) if all the conditions in the body (right-hand side, denoted
body(r)) are satisfied at time ¢. The framework supports multi-valued variables
and non-deterministic updates, making it particularly well-suited for modeling
complex biological systems.

In addition to inferring a logic program, we use the extended framework of
weighted logic programs (WDMVLP) [29] where each rule is assigned a weight
that reflects how often the rule’s body (conditions) is satisfied in the observed
data — a measure of its empirical coverage. A WDMVLP is composed of:

— Likeliness rules — from transitions observed in the data;
— Unlikeliness rules — from transitions never observed.

The weights serve as a proxy for rule reliability and enable probabilistic
prediction by contrasting the total support of contradictory rules. In the WD-
MVLP framework, unlikeliness rules—representing transitions not observed in
the dataset—are used to improve predictive accuracy. However, only likeliness
rules are considered for the construction of interaction graphs below, as they
correspond to transitions actually observed in the data and therefore represent
plausible ecological interactions. These rules form the starting point of graph
construction in our approach.

In this work, we exclusively use the PRIDE algorithm, given the performance
issues of GULA when applied to systems of more than 15 variables. As a result,
the logic programs of the WDMVLP are not complete and might thus miss some
explanations. To compensate for this limitation, we perform multiple runs of
PRIDE with different variable orderings and take the union of the resulting rule
sets, thereby approximating broader coverage while retaining polynomial-time
complexity.

4.2 Interaction Graphs Extraction

Although singular rules produced by LFIT are human-readable, a WDMVLP
can be very large: 20 000 rules in total in the case of this work. Summing all
the information of the interactions into a graph is therefore beneficial, but such
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a translation is not trivial. In the following, we propose a method to produce
a signed and weighted interaction graph where each node represents a variable
(e.g., a phytoplankton species) and directed and weighted edges represent inter-
actions inferred from the learned rules.

Edge weight computation. To construct the interaction graph, we assign a
weight to each directed edge based on the rules in the WDMVLP. For each pair
of variables (i,7), we define the edge i — j and compute a total weight w;_,;,
which aggregates the contributions of all rules where variable ¢ appears in the
body and variable j appears in the head. We denote the set of such rules as
Ri;. For each rule r € R;_,;, we compute a rule weight w(r), which represents
the contribution of rule 7 on the total edge weight w;_,;. To calculate w(r), we
need to define the following metrics:

— The coverage of a rule r, noted coverage(r), is the number of transitions
in the dataset for which the rule’s body is satisfied. Coverage reflects how
many times a particular condition appears in the observed data.

— The support of a rule r, noted support(r), is the number of transitions in
the dataset for which the whole rule is satisfied: its body is satisfied at time
t and its head at time ¢4 1. This reflects how many times the rule is realized.

From these metrics, we can derive the confidence of a rule r representing the
proportion of realization of this rule in the dataset. In other words, it represents
how often the rule’s head at time ¢ + 1 is realized, knowing that the body held
at time ¢. The confidence is defined as the conditional probability:

support(r)

P(head(r) | body(r)) = (3)

coverage(r)
To further emphasize the specificity of the rule, we normalize this by the
marginal probability of the head P(head(r)), and multiply by the support, thus:

P(head(r) | body(r))
P(head(r))

The normalization helps to down-weight rules that match only a few tran-
sitions in the dataset, which may be due to noise or rare events. Rules with
higher support are generally more robust, as they apply more often, and thus
reflect recurring dynamics. This usually makes a shorter body containing less
conditions to match, and these conditions imply a stronger interaction on the
head variable. Also, the multiplication by the support emphasizes how strongly
the body predicts the head relative to how often the head occurs overall. This
allows us to favor rules whose predictive power exceeds what would be expected
from the marginal distribution of the head variable alone. Both components are
essential: support ensures statistical relevance and generality, while normalized
confidence ensures predictive reliability. The combination yields an interpretable
measure of interaction strength in the resulting graph.

(4)

w(r) = support(r) -
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Finally, the general weight w;_,; is given by:

Wiy = Z w(r) (5)

re€Ri—;

Edge sign computation. In addition to weighting edges, we assign each one
a signed weight, which is an unbounded positive or negative value representing
the nature of the interaction. To determine the signed weight of an edge ¢ — 7,
we compute a signed weight from each rule r € R;_,;. The signed weight of a
rule r on 7 — j is computed as:

sign;_,; (1) = 6i—;(r) - w(r) (6)
where:

— 0;—;(r) equals —1 if the head j and body variable ¢ differ in value (e.g., one
is high while the other is low) and 1 if they are aligned.
— w(r) is the (positive) weight of the rule, calculated as described above.

The idea behind §;_, ;(r) is that a positive influence from ¢ to j is characterized
by variable ¢ pushing j towards the same value. On the contrary, if an increase
of i makes j decrease, or conversely if a decrease of ¢ makes j increase then this
rather characterizes a negative influence.

FEzxzample 1. For instance, let us consider a likeliness rule r of this form:
(vl =1) < (v =1) A ... The signed weight of this rule r on edge v; — v is:
sign,, _,,(r) = 1-w(r) since the values of v'*! and v} are aligned.

The total signed interaction from variable 4 to variable j is then the sum of
all signed rule contributions:

SIgn; ;5 = E sign; ,;(r)
rERj

Representation in the Graph To sum up, this section, for each directed edge
1 — j in the influence graph, two complementary measures are derived from the
set of rules R;_,; (i.e., where variable i appears in the body and j in the head).

The first is the edge weight, defined as the sum of the weights of all such
rules. This value reflects the overall strength of the inferred interaction, and is
used to determine the thickness of the edge in the graph.

The second is the edge signed weight, which incorporates the direction
of influence. For each rule, we assign a sign (+1 or —1) based on the type of
interaction (i.e., alignment or opposition of variable values), and multiply it by
the rule’s weight. The signed weight is then the sum of these signed contributions
across all relevant rules. This value is mapped to the edge color: green for
positive interactions, red for negative ones, and gray for ambiguous or mixed
interactions (i.e., when the signed weight is close to zero).
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This dual encoding allows us to distinguish between interactions that are
consistently positive or negative (strongly colored, but not necessarily thick),
and those that are strongly supported but directionally ambiguous (thick but
near-gray).

This graph provides an interpretable, rule-based summary of system dynam-
ics, enabling further analysis of community interactions and key drivers in eco-
logical networks. The graphs obtained in this work are presented in the next
section.

5 Phytoplankton interaction Graphs

5.1 Application of PRIDE

The PRIDE algorithm, while efficient and scalable, is sensitive to the order in
which input variables are provided. It prioritizes explanations based on the early
variables in the input list, which can lead to incomplete coverage of potential
rule sources. To mitigate this bias and better approximate the exhaustive rule
set produced by GULA, we performed 5 independent runs of PRIDE, each using
a different random permutation of the variable ordering. The variable orderings
and the corresponding accuracy of each model are reported in Table [2| in the
Appendix. In all runs, abiotic variables were placed first to ensure that the algo-
rithm first attempts to explain species dynamics through environmental factors.
This prioritization helps reduce the risk of inferring spurious biotic interactions
that may in fact result from shared responses to abiotic drivers. We then took the
union of all resulting rules across these runs to construct a more comprehensive
logic program. Since PRIDE outputs minimal rules, this aggregation does not
introduce overlap. Importantly, this approach preserves PRIDE’s polynomial-
time complexity, unlike GULA’s exponential cost, and remains tractable for our
dataset. The aggregated model achieved an accuracy of 0.86, outperforming each
individual run. This suggests that combining the rules improves overall predic-
tive performance.

5.2 Interaction Graph over all Phytoplankton Species

We first present the global interaction graph generated from the symbolic learn-
ing process, which captures both biotic and abiotic interactions across all species
in the dataset (Figure [3|in Appendix). In this graph, each node corresponds to
a phytoplankton taxon, and directed edges represent inferred interactions de-
rived from logical rules. For readability reasons, abiotic factors have not been
represented here.

Edge weight and signed weight were calculated using the weighted rule ag-
gregation method described in Section [4

It is important to note that while these graphs depict directed influences
between species, they do not directly indicate specific ecological interaction types
such as competition, allelopathy, predation, or facilitation. The symbolic learning
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framework identifies patterns consistent with influence—i.e., how the presence
of one species may relate to changes in another—but cannot distinguish whether
this influence is direct or indirect. For example, an inferred interaction may result
from a shared dependency on a resource, rather than a direct species-to-species
influence.

Moreover, while our ultimate goal is to uncover causal ecological relation-
ships, the LFIT-based framework and PRIDE algorithm used here cannot guar-
antee causality. The rules capture patterns in observed transitions, but without
further constraints or integration of ecological prior knowledge, causal inference
remains out of reach.

In this context, expert knowledge is essential to interpret the inferred graphs
meaningfully. Ecologists familiar with the system must assess whether observed
patterns align with known mechanisms, suggest new hypotheses, or may re-
flect confounding environmental structures. Therefore, we view these graphs as
a hypothesis-generating tool, rather than a definitive mapping of ecological in-
teraction types.

5.3 Species-Centered Graphs: Focus on Target Species

To improve interpretability, we extract subgraphs centered on individual target
species. Each of these visualizations shows all inferred interactions from other
species to a single focal species. For each graph, edge thickness and color in-
tensity are rescaled independently based on the minimum and maximum values
within that graph. This local normalization facilitates comparison of relative in-
teraction strengths and signs within each subgraph, while preventing domination
by extreme values present in other graphs.

Figure [4] in Appendix shows the inferred interaction graph for Phaeocystis.
Some interactions appear consistent with previous ecological interpretations and
results reported in [20]. That study identified two different environmental tra-
jectories: one associated with years of high Phaeocystis abundance and another
with low abundance, based on combinations of abiotic conditions such as irradi-
ance, turbidity, and nutrient concentrations. Species were grouped according to
their presence along these trajectories, reflecting their realized ecological niches.

According to that study, certain species such as Skeletonema, Thalassionema
nitzschioides, Paralia sulcata, Guinardia striata, and Guinardia delicatula ap-
pear in both high and low Phaeocystis abundance trajectories. Their ecological
niches are broad enough to accommodate a range of conditions, including those
that precede Phaeocystis blooms. As such, their impact on Phaeocystis dynam-
ics might be relatively neutral in the inferred graph, although there are some
exceptions, such as a weak positive interaction from Guinardia delicatula.

In contrast, species that appear only in the high-abundance trajectory, such
as Ditylum, Chaetoceros danicus, Nitzschia longissima, and Leptocylindrus dan-
icus, are expected to have a more clearly positive influence. They occupy real-
ized niches that align with the environmental trajectory preceding a Phaeocystis
bloom. These species are associated with increasing irradiance, reduced turbidity,
and moderate nutrient levels, conditions favorable to bloom development. This
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is reflected for Ditylum and Chaetoceros danicus in the interaction graph, but
not as clearly for Nitzschia longissima and Leptocylindrus danicus. In the case
of Leptocylindrus danicus, its appearance later in the season, after Phaeocystis
blooms, could explain the observed negative interaction.

Finally, species restricted to low-abundance years, such as Thalassionema
gracilis, tend to show negative interactions with Phaeocystis. An exception is
Pseudo-nitzschia seriata, which is sometimes observed during bloom events and
is known to physically insert itself into Phaeocystis colonies, potentially explain-
ing its weak positive effect.

It is important to note that our inference method does not model delayed
effects. Therefore, some inferred interactions may not align directly with the
mechanistic hypotheses proposed in [20], particularly those involving time-lagged
processes.

5.4 Abiotic Factors Influence Graphs

In addition to the species interaction graph, we can also look at the abiotic fac-
tors graph, representif the potential effects of abiotic variables on Phaeocystis,
shown in Figure[§]in Appendix. This graph serves as a form of validation for the
method, since the relationships between Phaeocystis and abiotic factors are rel-
atively well understood. As expected, we observe positive effects from NO, and
PO,, which are typically associated with nutrient enrichment preceding blooms.
Conversely, SiOH (silicate) has a negative effect, likely due to its association
with diatom growth: as long as silicate is abundant, diatoms thrive, often out-
competing Phaeocystis. Similarly, high salinity and elevated NH, concentrations
correspond to summer conditions when Phaeocystis is typically absent, and are
therefore also associated with negative effects in the model.

6 Conclusion and Future Works

This study introduces a symbolic learning framework for inferring interspecies
and environmental interactions in phytoplankton communities, using long-term
observational data from the SRN [32] monitoring program. Building on the LFIT
framework and its most scalable algorithm, PRIDE, we computed interpretable
logic rules. Our method differs from black-box machine learning in that it em-
phasizes explainability and rule-level insight. In particular, we introduced a rule
weighting scheme based on both rule support and normalized confidence, from
which we extracted biotic and abiotic interactions in graph form. These graphs
offer a compact, readable representation of species dynamics that complements
classical modeling approaches and provides domain experts with a new lens for
ecological interpretation. While our framework ultimately aims to capture causal
ecological dynamics, it currently does not enforce constraints that would guaran-
tee causality. As such, expert ecological knowledge remains essential to interpret
the interaction graphs and to hypothesize the possible underlying mechanisms
behind the observed patterns. For certain focal species, such as Phaeocystis, the
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resulting graphs highlighted at least one interaction in agreement with previous
work [20]. The other interactions might be new information that requires deeper
expert analysis. The source code for this work is available online as Python
notebooks at: https://zenodo.org/records/156389109.

These results open directions for future work. First, the algorithm used is
memoryless and cannot account for lagged dependencies or historical patterns.
Incorporating memory into the rule-learning process (e.g., using sliding windows
or temporal embeddings) could improve accuracy and ecological plausibility. Sec-
ond, light-related variables were not fully discretized due to data limitations, and
further work is needed to apply trait-informed discretization consistently across
all abiotic dimensions. Third, the current model learns from all transitions with-
out incorporating known ecological constraints. Future versions could integrate
prior knowledge to guide or restrict rule inference—for example, by excluding
interactions between species with disjoint seasonal niches or well-documented
independence. Finally, our method could also be extended to multi-valued logic
variables, requiring to better fine-tune the discretization but also adapt the in-
fluence graph inference.

Overall, this work demonstrates the feasibility and value of symbolic learning
in marine ecology. It bridges observational data and ecological theory through
interpretable modeling and opens the door for more robust, reusable frameworks
that combine data-driven learning with expert knowledge. We believe that this
approach can be extended to a wide range of ecological systems, offering a new
tool for understanding complex species interactions in dynamic environments.
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Fig. 2. lllustration of a discrete multivariate time series (left) and its corresponding set
of state transitions (right). Variables a and b represent abiotic factors, while variables
c and d represent phytoplankton species. Each row in the table shows variable values
at a time step. Each transition shows how the system state changes from one time to
the next, the target variables being species. In our application, all variables take values
in {0,1}.
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Table 1. Comparison of R? scores from random forest models predicting each species.
“Abiotic” includes only abiotic factors as predictors; “Abiotic + Biotic” includes both
abiotic factors and the other 11 species as predictors. Including other species as pre-
dictors improves the ability to model the dynamics of a target species.

Target species Abiotic  Abiotic 4+ Biotic
Chaetoceros danicus 0.16 0.21
Ditylum 0.17 0.33
Guinardia delicatula 0.18 0.30
Guinardia striata 0.12 0.17
Leptocylindrus danicus —0.007 0.12
Nitzschia longissima 0.05 0.20
Paralia sulcata 0.08 0.16
Pseudo-nitzschia seriata 0.13 0.13
Skeletonema, 0.01 0.11
Thalassionema nitzschioides 0.12 0.22
Thalassiosira gravida 0.20 0.37
Phaeocystis 0.50 0.47

Table 2. Variable orders and model accuracies for different PRIDE runs. The last row
reports the accuracy of the aggregated model obtained by taking the union of the rules
from all five runs.

Run

Variable Order

Accuracy

1

SIOH, NO2, NH4, TEMP, PO4, SALI, TURB, NO3, MESINORG,
MESORG, Nit. lon., Gui. str., Gui. del., Ske., Lep. dan., Tha. gra.,
Pseudo-nit. ser., Dit., Phaeocystis, Chae. dan., Par. sul., Tha. nit.

0.67

PO4, MESORG, TURB, MESINORG, NH4, NO3, SIOH, NO2, SALI,
TEMP, Tha. gra., Tha. nit., Dit., Pseudo-nit. ser., Ske., Par. sul.,
Chae. dan., Phaeocystis, Gui. str., Gui. del., Lep. dan., Nit. lon.

0.67

NH4, SALI, MESORG, SIOH, TEMP, NO2, PO4, MESINORG, NO3,
TURB, Gui. del., Tha. gra., Pseudo-nit. ser., Dit., Par. sul., Chae.
dan., Phaeocystis, Gui. str., Nit. lon., Tha. nit., Lep. dan., Ske.

0.67

MESINORG, NO3, PO4, TEMP, SIOH, TURB, NH4, SALI,
MESORG, NO2, Chae. dan., Pseudo-nit. ser., Phaeocystis, Par. sul.,
Ske., Nit. lon., Tha. nit., Gui. del., Dit., Lep. dan., Tha. gra., Gui.
str.

0.68

SALI, SIOH, TURB, MESORG, MESINORG, NH4, PO4, NO2,
TEMP, NO3, Chae. dan., Phaeocystis, Gui. del., Tha. gra., Ske.,
Pseudo-nit. ser., Tha. nit., Nit. lon., Gui. str., Dit., Lep. dan., Par.
sul.

0.67

Aggregated model (union of rules from all runs)

0.86
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Fig. 3. Global interaction graph among phytoplankton species. Edge color indicates
interaction sign (green for positive, red for negative and gray for unsure), and thickness

reflects interaction strength.
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Fig. 4. Interaction graph of the biotic variables targeting Phaeocystis. Edge label in-
dicates interaction sign strength (associated with edge color), and thickness reflects

interaction strength.
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