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Analysis of Biological Networks o Introduction

Overview of This Presentation

Frameworks: modeling biological processes
e Thomas modeling (historically widespread)
o Asynchronous Automata Networks (generalization)

o Hybrid Thomas modeling (generalization)

Model completion: inferring missing information on the model
e Hybrid Hoare logic (parameters/logical gates on Hybrid Thomas modeling)

e Continuous transitions (logical thresholds from expression profiles)

Dynamic analyses: explore the dynamics of a model
o p-calculus & Answer Set Programming (exhaustive)

o Abstract interpretation (approximations)
TGF-B pathways project: my work here as a postdoc

e Extract and build a big graph from databases

e Search for inconsistencies in cancerous types
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Analysis of Biological Networks o Frameworks o René Thomas Modeling

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

o A set of components N = {a, b, z}
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Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

o A set of components N = {a, b, z}

o A set of discrete expression levels for each component a € F? = [0; 2]
o The set of global states [ = F? x Fb x F?

e An evolution function for each component  f#: F — F*

a | fo(a) z b | fi(z,b) a b | f*(ab)
0 0 0 o0 1 0 0 0
1 1 0 1 0 0 1 0
2 1 1 0 1 1 0 0
1 1 2 1 1 0
2 0 0
[0:2] 2 1 1
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Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

o A set of components N = {a, b, z}
o A set of discrete expression levels for each component a € F? = [0; 2]
o The set of global states F =F? x Fb x F?
. +
o Signs on the edges a — z
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Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

o A set of components N = {a, b, z}
o A set of discrete expression levels for each component a € F? = [0; 2]
o The set of global states F =F? x Fb x F?

. . 2,+
o Signs on the edges a *z or signs & thresholds a —— z
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Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

o A set of components N = {a, b, z}
o A set of discrete expression levels for each component a € F? = [0; 2]
o The set of global states F =F? x Fb x F?

o Signs on the edges a *z or signs & thresholds a 2’—+> z
o Discrete parameters / evolution functions f2:F — [F?
a | fo(a) z b | fi(z,b) a b | f(ab)
0 0 0 O 1 0 O 0
1 1 0 1 0 0 1 0
2 1 1 0 1 1 0 0
1 1 2 1 1 0
2 0 0
|[0 2] 2 1 1
[[o 1]
|[0 1]
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State-graph

The state-graph depicts the whole dynamics
Computation: exponential in the size of the model

b =
®§

000 «— 010 001 «— 011 ()
100 —— 110 101 —— 111
200 — 210 201 —— 211
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State-graph

The state-graph depicts the whole dynamics
Computation: exponential in the size of the model

b =
®§

000 &—— 010 001 ——— 011 O
100 —— 110 101 ——— S5 111
200 ——— 210 201 ——— 211’}

e Stable state = state with no successors
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State-graph

The state-graph depicts the whole dynamics
Computation: exponential in the size of the model

e Stable state = state with no successors

e Complex attractor = minimal loop or composition of loops from which the
dynamics cannot escape
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Analysis of Biological Networks o Frameworks o René Thomas Modeling
State-graph

The state-graph depicts the whole dynamics
Computation: exponential in the size of the model

e Stable state = state with no successors

e Complex attractor = minimal loop or composition of loops from which the
dynamics cannot escape

o Reachability = from 000, can | reach 2017
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Asynchronous Automata Networks (AAN)
Enriched Process Hitting (PH)
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Asynchronous Automata Networks (AAN)
Enriched Process Hitting (PH)

Model from [Francois et al., Molecular Systems Biology, 2007]
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Translations Between AAN and Thomas Modeling

[Folschette et al., Theoretical Computer Science, 2015a]
[Folschette et al., CS2Bio’13, 2013]

Asynchronous Automata Thomas modeling
Networks

e Asynchronous Automata Networks encompass Thomas modeling
e Mutual translations developed

o Results are also mutually applicable
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Model Completion
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A Simplified Circadian Cycle Model

Simplified circadian cycle

Day/light cycle

pc = PER/CRY complex

L = light of the day
g = per and cry genes

X = Modeling artifact (clock)

m1 = PER/CRY complex inhibits per and cry genes

my = transcription and complexation

m3 = light makes BMAL1/CLOCK complex activate per and cry genes
ms & ms = 12h day/night oscillation
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Hybrid Thomas Modeling

Simplified circadian cycle Day/light cycle

00 > 10 > 20
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Hybrid Thomas Modeling

Ca{m}a1
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Ca,{m}.1

Ca {m3}.0
Ce,z.0

Ca {rmyum} 2
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Hybrid Hoare Logic to Infer Parameters
221 (T4 e 7;3 _ 2 , L& Dy=(na=2Ans=0)
2 | T |ilslide™B) || T || T Ho = (Tinitial = Tinal)
I B+ A— B_ A+ 0 = \Tinitial final

BA slide(B)

Ca,z.0 Ca{mi} 1 gAA(m.}Az
B.{m}.1

Ca {ms},0
CB,2,0

0 1 2 A

Maxime FOLSCHETTE 13/32 GT Dyliss — 2017/11/15



(Y = 0.12) A (xS = 0.12) A (=0 = ) A (7} = 1) A (€L {5y 0 > O A () =

— (€L, {m5},0 X 8- A (—((Cg, 5,0 > O A (wé/ > (7k = (Cg, 2,0 X 6:6))) A (=((Cpe, 5,1 < O) A (k. <
e = (Cpe, 3,1 X6 A=((Cx, 5,0 > OA(ry > (7h = (Cx, g0 X6-OMNA((r] = Q=7 NA((xE = =3I A
(mhe = 7S YAy = = MM A= = ) A (Cx, o1 < DA = (7% = (Cx, 5,1 X 0NN A (~(Cg, 5,0 >
0 A (m2" > (72 = (Cgz,0 X 0-6D) A (—((Cpe,z,1 < 0) A (w3 < (72 = (Cpe, 1 X 0-6)) A =((Cp,zr,0 >
O A (r? > (v = (CL g0 X 0 A (((x2 =0) A((CL g0 < 0) = (w2 < (w7 = (CL g0 X 0-6))) A ((m% =
A= NA2 =7t YA (72 = mp ) A (xd = 7 MNS A (7 =) A (Cg 1 < O) A (3 =

(72 = (Cg, .1 XSADNA(Cpe, {may,1 < OA (o < (M = (Cpe, {ma} 1 XS-ONA(=((CL g0 > OA(mE >
(73 = (CLo,0 X 5O A ~((Cx, .1 < O A (ny < () = (Cx, 2,1 X 54 A ((Tpe = D A (Cpe {m2},1 >

0) = (w3 > (mpe = (Coc {m2},1 X 54D A (G ms == w2 N A3 = w2 ) A (= 7Y A (Y =

2 MM A (=] =0 A (Cp g1 <O A (x} = (nf — (CL 2.1 X 04T A (~(Cq may,1 < O A (7§ <
(g = (Cg, {ma},1 X 04D A (~(Cpe, {ma},1 < O A (mpc” < (wgc (Coc, {ma},1 X 04D A ~((Cx (ma},1 <
0) A (%) < (x§ — (Cx {may,1 X 04D A (=] = (1 — «f’)) A =3 ) A (e = 73 ) A (k=
TN A (7pe =D A (Cpe, {m2y,0 > O A (mpe” = (mhe = (Cpe, {m2},0 % 553 A ((~((Cq, (m1,m3},1 <

VNGRS (wg—(c {ml,m3},1 X 5SIMA(CL g1 < OJA(rS' < (7} = (CLz,1 X5EN A ((Cx {may,1 <
0) A (wf(’ < (n% = (cx, {may,1 X 553 A (x5 =) A (G, {ml m3p, >0 = (wg’ >
(73 = (Cg fm1,m3},1 X 55 A (w5 = (1 = g NA (5 = mg Y A (=} = 7} ) A (rS = 75 A (= =

DA (Cx, {may,0 > O A (TS = (7% = (Cx {may,0 X 0-6))) A ((ﬁ((c mi,m3pa <O A (xS <

(7§ = (Cq, {m1,m3},1 X 0-6D) A (~((Cpe, gmay,0 > O A (75" > (78 = (Cpoe {may,0 X O 6)>)>A =€ {msy,1 <
) (wﬁ’ < (wﬁ (€L, fmsy,1 X 0O A (% = (@ = 75N A (7§ = 75") A (whe = 75 /) A (70 =
T2 A (7 = 1) A (Cq, {m1,m3p,0 > O A (g = (7] = (Cg i, )0 % 4 ) A (( (Cpe, 2,0 >

0) (mp’ > (=} be ~(Cpe, 0 X 4-5)) A (=((CL, (s} 1 <A’ <<7r — (€L {m5},1 X 45 A(Cx, {may,0 >

O A (nl) > (7% = (Cx {may,0 X 45 A (mf = (1 = 7§ A (whe = 78" ) A (=] = 78y A (], =
7S A (78 = 0) A (Cpe, 5,1 < 0) A (wf,c’ = (8, — (cpc 2,1 X 0.9 A (=((Cq, {m3},0 > O A (xS >
(8 — (Cg, (m3},0 X 0-9) A (=((CL {m5},1 < O A (m f < (78 = (€L {ms},1 X 09 A =((Cx, {may, o >

A S > (78 = (Cx may,0 X MM A (7S = (@ = 7l N A (= = 7Z ) A (=% = 7] ) A (= = =L )



(g = 012) A ((wh = 0.32) A (=0 = ) A (=] =) A (S (ms},0 > O) A () =

b= (€ {msy,0 X 6 A ((~(Cg,z,0 > O A (rh > (mh = (Cg 5,0 X 6:6) A (~((Cpe, 5,1 < O) A (mp <
The = (Cpe, 5,1 X 6D A=((Cx, 55,0 > o)A(w}(/ > (n} = (Cx,@,0 X6 A (] = A== NA (g = 73 )A
(mde = 70 A G = 7S MM AU = 0)A(Cx, 5,1 < DA (2" = (72 = (Cx, 2,1 X 0. A((~(Cg, 27,0 >
0 A (m2" > (72 = (Cgz,0 X 0-6D) A (—((Cpe,z,1 < 0) A (w3 < (72 = (Cpe, 1 X 0-6)) A =((Cp,zr,0 >
0 A (r2 > (72 = (C g0 X 0.6 A (72 =0) A(CL g0 < 0) = (m2) < (n2 = (CL g0 X 0-6))) A (7% =
=l N A2 =7t ) A2 = wb) A 2 = m I A (73 = 0) A (Gg o1 <O A (3 =
(72 = (Cg, 0,1 XSADNA(Cpe, {may,1 < OALTE: < (Mpe = (Cpe, {ma} 1 XS-DNA(=((CL g0 > OA(mE >
(73 = (CL,z,0 X 59 A =~((Cx,@,1 <O A < (=} — (Cx, 1 X 54 ((73e = VA (Cpe, {m2} 1 >
0) = (n ,§C’ > (3 = (Cpe, {m2},1 X 54 A <( ms = (1= w2 ) A (3

2 M A (= =0) A (€L, z,1 < 0) A (ot (7"%,2,1 x 0,
(mg = (&, 5.} 1% 4N A (=UGpe, 0) A (modll) (=
o) A ;‘< <7y = (Cx gmay,1 X 04D A (=] = (1 — 73" A

73 MM A (75 = 1) A (Cpe, {may,0 > 0) A (w5 = (w5 — (€
Ay < (75 —(Cp fm1,m3},1 X5-5MA((CL o1 < OA(m]
0) A (%) < (7% = (Cx, {may,1 X 5-53) A (75 = 1) A (S ¢

AR} =) Ay =
A((Cq, may,1 <O A (mg) <

e, {m2},1 X 0470 A =((Cx {may 1 <
VA (mpe = 73 ) A (=

2},0 X 5:53))) A (((Cg {m1,m3},1 <
(7} —(CL 5,1 X 55N A((Cx, (ma},1 <
3}1>0)¢(w§' >

(73 = (Cg, fm1,m3},1 X 55 A (w5 = (1 = mp N A (5 = mg WA=} = 7}) A (x5 = 73 A (=G =
DA (Cx, {may,0 > O A (7% = (7§ = (Cx {may 0 X O- 6) ) ) A= (m1,m3},1 <O A (wﬁ <

(=% — (S, {m, )1 X 0.6))) A (~((Cpe, {m2}, 0 > 0) A (w8 > (7S — (Coc, {may,0 X O- 6))))A =€ {msy,1 <
0 A (w8 < (7 = (L {m5y,1 X 0O A (= (1—w5’>)A(<wg 7S A (7 = 75 ) A (x8 =
=DM A (x ; A (Cq, {m1,m3},0 > O A ( gy = (nf - ( 5. (m1,m3) 0 X 4.5)) A (( (Cpe, 2,0 >
AL > (7l = (Cpe, 0 X 4- I A(=((CL, (s} < Ow < (7] = (€L tms},1 X 4N A(Cx, (may,0 >
0 Al > (7] = (Cx {may,0 X 45 A ((nf = (1 — =5 )) A ((wf,c =8 ) A ] =) A (x] =
7S A (78 = 0) A (Cpe, 5,1 < 0) A (wﬁc’ = (78 = (Cpe,z,1 X 09 A (~((C {m3y,0 > O A (xS >
(78 = (Cg, {m3},0 X 09 A (€L {ms},1 < O A (7 < (78 = (Cp fmsy,1 X 0:9) A =((Cx, {ma},0 >

A S > (78 = (Cx may,0 X MM A (7S = (@ = 7l N A (= = 7Z ) A (=% = 7] ) A (= = =L )



Analysis of Biological Networks o Model Completion o Hybrid Thomas Modeling & Hoare Logic

Results

o Simplifications of the constraints

e Let's use a solver! :-)

o Results checked with a simulation:

Simulation with compatible values Experiments
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Analysis of Biological Networks o Model Completion o Continuum Learning From Time Series

Modeling Gene Interactions

Goal: understand biological dynamics, i.e. gene interactions.
Data: time series Model: Boolean network
o discrete/regular time steps e discrete/regular time steps

e continuous value o discrete values
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Goal: understand biological dynamics, i.e. gene interactions.

Data: time series

Model: Boolean network

o discrete/regular time steps e discrete/regular time steps
e continuous value

e discrete values
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Analysis of Biological Networks o Model Completion o Continuum Learning From Time Series

Continuum Logic Program

INPUT: OUTPUT:
A set of time series data A continuum logic program

p([0705]7 t) — q([07 05]7 t— 1)

P([0'5’ 1]7 t) A CI([0~5, l]a t— 1)‘

: e : a([0,0.5], t) « p([0,0.5], £ — 1) A r([0.5, 1], t — 1).

q([0.5,1],t) < p([0.5,1], £ — 1) A r([0.5,1], t — 1).

ol r([0,0.5], t) + p([0.5,1],t — 1).
r([0.5,1], t) < p([0,0.5], t — 1).
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Continuum Logic Program

INPUT: OUTPUT:
A set of time series data A continuum logic program

p([0705]7 t) — q([07 05]7 t— 1)

P([0'5’ 1]7 t) A Cl([0~5, l]a t— 1)‘

; : ; : q([0,0.5], t) < p([0,0.5], t — 1) A r([0.32,1], t — 1).

e q([0.5,1], t) « p([0.5,1], t — 1) A r([0.32, 1], ¢ — 1).

ol r([0,0.32], t)  p([0.5,1],t — 1).
r([0.32,1], t)  p([0,0.5], ¢ — 1).
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Dynamic Analysis
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Analysis of Biological Networks o Exhaustive Dynamic Analyses o Analysis with p-calculus

Polyadic p-caculus

Aim: Unification of properties without quantifiers

o Enumeration of attractors & disruptions
o Bisimulation between two models (regarding some observables)

o Searching Zeno behaviors

Maxime FOLSCHETTE 19/32 GT Dyliss — 2017/11/15



Analysis of Biological Networks o Exhaustive Dynamic Analyses o Analysis with p-calculus

Polyadic p-caculus

CTL*

Aim: Unification of properties without quantifiers

o Enumeration of attractors & disruptions
o Bisimulation between two models (regarding some observables)

o Searching Zeno behaviors
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Analysis of Biological Networks o Exhaustive Dynamic Analyses o Analysis with p-calculus

Polyadic p-caculus

Modal
p-calculus

Explicit fixed points

Aim: Unification of properties without quantifiers

o Enumeration of attractors & disruptions
o Bisimulation between two models (regarding some observables)

e Searching Zeno behaviors
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Analysis of Biological Networks o Exhaustive Dynamic Analyses o Analysis with p-calculus

Polyadic p-caculus

Polyadic Modal

p-calculus | p-calculus

Multiple dynamical tokens Explicit fixed points

Aim: Unification of properties without quantifiers

o Enumeration of attractors & disruptions
o Bisimulation between two models (regarding some observables)

e Searching Zeno behaviors
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Analysis of Biological Networks o Exhaustive Dynamic Analyses o Analysis with Logic Programming

Answer Set Programming

Answer Set Programming (ASP): Declarative & logic programming

Rule: head < body.
“If body is true, then head must be true (usual logical consequence)”
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Answer Set Programming

Answer Set Programming (ASP): Declarative & logic programming

Rule: head < Ai,...,Ap,not Api1,...,n0t An.
“If body is true, then head must be true (usual logical consequence)”

Fact: head < T.
“head is always true”

Maxime FOLSCHETTE 20/32 GT Dyliss — 2017/11/15



Analysis of Biological Networks o Exhaustive Dynamic Analyses o Analysis with Logic Programming

Answer Set Programming

Answer Set Programming (ASP): Declarative & logic programming

Rule: head < Ai,...,Ap,not Api1,...,n0t An.
“If body is true, then head must be true (usual logical consequence)”

Fact: head.
“head is always true”

Maxime FOLSCHETTE 20/32 GT Dyliss — 2017/11/15



Analysis of Biological Networks o Exhaustive Dynamic Analyses o Analysis with Logic Programming

Answer Set Programming

Answer Set Programming (ASP): Declarative & logic programming

Rule: head < Ai,...,Ap,not Api1,...,n0t An.

“If body is true, then head must be true (usual logical consequence)”
Fact: head.

“head is always true”
Constraint: | <« body.

“If body is true, it invalidates the whole answer set”
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Answer Set Programming

Answer Set Programming (ASP): Declarative & logic programming
Rule: head < Ai,...,Ap,not Api1,...,n0t An.
“If body is true, then head must be true (usual logical consequence)”

Fact: head.
“head is always true”

Constraint: | <« body.
“If body is true, it invalidates the whole answer set”

Example:

node(a). node(b). node(c). a

edge(a, b). edge(b, c). edge(a, c).
edge(X, Y) « edge(Y, X). e‘a
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Answer Set Programming

Answer Set Programming (ASP): Declarative & logic programming

Rule: head < Ai,...,Ap,not Api1,...,n0t An.

“If body is true, then head must be true (usual logical consequence)”
Fact: head.

“head is always true”
Constraint: | <« body.

“If body is true, it invalidates the whole answer set”

Example:

node(a). node(b). node(c). a

edge(a, b). edge(b, c). edge(a, c).
edge(X, Y) « edge(Y, X). e‘a

Solving: Finding the minimal set of atoms satisfying the problem
node(a) node(c) node(b)
edge(a,b) edge(b,c) edge(a,c)
edge(b,a) edge(c,b) edge(c,a)
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Analysis of Biological Networks o Exhaustive Dynamic Analyses o Analysis with Logic Programming
Answer Set Programming

Cardinalities:  min { atom : enum } max < body.

e Enumerates all atoms of the form atom according to the variables of enum
o Keep between min and max possibilities
o Creates as many answer sets as there are combinations
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Answer Set Programming

Cardinalities:  min { atom : enum } max < body.
e Enumerates all atoms of the form atom according to the variables of enum

o Keep between min and max possibilities
o Creates as many answer sets as there are combinations

General method:
1) Enumerate of all candidate combinations using cardinalities
color(red). color(green). color(blue).
1 { attrib(X, C) : color(C) } 1 < node(X).
Answer set 1: attrib(b,red) attrib(c,red) attrib(a,red)
Answer set 2: attrib(b,red) attrib(c,red) attrib(a,blue)
Answer set 3: attrib(b,red) attrib(c,green) attrib(a,blue)

(27 answer sets)
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Answer Set Programming

Cardinalities:  min { atom : enum } max < body.

e Enumerates all atoms of the form atom according to the variables of enum
o Keep between min and max possibilities
o Creates as many answer sets as there are combinations

General method:

1) Enumerate of all candidate combinations using cardinalities
color(red). color(green). color(blue).
1 { attrib(X, C) : color(C) } 1 < node(X).
Answer set 1: attrib(b,red) attrib(c,red) attrib(a,red)
Answer set 2: attrib(b,red) attrib(c,red) attrib(a,blue)
Answer set 3: attrib(b,red) attrib(c,green) attrib(a,blue)

(27 answer sets)

2) Filter out the undesired candidates using constraints

L « attrib(X, C), attrib(Y, C), edge(X, Y).
Answer set 1: attrib(b,green) attrib(c,blue) attrib(a,red)
Answer set 2: attrib(b,green) attrib(c,red) attrib(a,blue)
Answer set 3: attrib(b,blue) attrib(c,green) attrib(a,red)

(6 answer sets)
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Conclusion on ASP for Model-checking

[Ben Abdallah, Folschette, Roux, Magnin, BIBM’15, 2015]
[Ben Abdallah, Folschette, Roux, Magnin, AMB, 2017]

e General approach applied to dynamical analysis:

1) Describe the model with facts and rules (automata, actions, dynamics)
2) Enumerate all states/all dynamics with cardinalities
3) Filter out unwanted results

e Applications: Stable states, Reachability analysis, Attractors enumeration
e Pros: Very flexible (programming language) & Complexity handled by the solver

e Cons: lterative approach (requires to cap the search) & Still computational

Models Stable states Reachability analysis
Name [ States ASP libddd™ [ GINsim? | ASP
egfr20 2064 0.017s 1min 55s | 2min 32s 12s
tcrsigd0 273 0.021s 00 00 4min 28s

1 LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]

2 TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]
egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
tersigd0 : T-Cell Receptor (40 components) [Klamt et al., 2006]
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Static Analysis of Thomas Modeling

[Thomas, Numerical Methods in the Study of Critical Phenomena, 1981]

Conjectures of René Thomas:
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Static Analysis of Thomas Modeling

[Thomas, Numerical Methods in the Study of Critical Phenomena, 1981]

Conjectures of René Thomas:

e Multiple stable states = positive cycle in the graph
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Static Analysis of Thomas Modeling

[Thomas, Numerical Methods in the Study of Critical Phenomena, 1981]

Conjectures of René Thomas:
e Multiple stable states = positive cycle in the graph
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Static Analysis of Thomas Modeling

[Thomas, Numerical Methods in the Study of Critical Phenomena, 1981]

Conjectures of René Thomas:
e Multiple stable states = positive cycle in the graph

o Sustained oscillations (complex attractor) = negative cycle in the graph
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Static Analysis of Thomas Modeling

[Thomas, Numerical Methods in the Study of Critical Phenomena, 1981]

Conjectures of René Thomas:
e Multiple stable states = positive cycle in the graph

o Sustained oscillations (complex attractor) = negative cycle in the graph

[0; 2]
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| ]

Proofs: [Remy, Ruet & Thieffry, Advances in Applied Mathematics, 2008]
[Richard, Advances in Applied Mathematics, 2010]
[Richard & Comet, Discrete Applied Mathematics, 2007]
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Static Analysis of Thomas Modeling

[Thomas, Numerical Methods in the Study of Critical Phenomena, 1981]

Conjectures of René Thomas:

e Multiple stable states = positive cycle in the graph
No positive cycle in the graph = The stable state (if any) is unique

o Sustained oscillations (complex attractor) = negative cycle in the graph

[0; 2]

1000 «— 010’

| ]

Proofs: [Remy, Ruet & Thieffry, Advances in Applied Mathematics, 2008]
[Richard, Advances in Applied Mathematics, 2010]
[Richard & Comet, Discrete Applied Mathematics, 2007]
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Static Analysis of Thomas Modeling

[Thomas, Numerical Methods in the Study of Critical Phenomena, 1981]

Conjectures of René Thomas:

e Multiple stable states = positive cycle in the graph
No positive cycle in the graph = The stable state (if any) is unique

o Sustained oscillations (complex attractor) = negative cycle in the graph
No negative cycle in the graph = No complex attractor (only stable states)

[0; 2]

1000 < 010’

| ]

Proofs: [Remy, Ruet & Thieffry, Advances in Applied Mathematics, 2008]
[Richard, Advances in Applied Mathematics, 2010]
[Richard & Comet, Discrete Applied Mathematics, 2007]
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Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

— Directly checking R is hard (exponential)

— Rather check approximations P and Q so that: P = R = Q
Computing P or Q is much simpler (roughly polynomial)

Exact solution
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Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

— Directly checking R is hard (exponential)

— Rather check approximations P and Q so that: P = R = Q
Computing P or Q is much simpler (roughly polynomial)

Exact solution

Under-approximation
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

ap ' a; —O—>
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

ag I'* ap
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No cycle

e No conflict

o All leaves are

o
ag I'* ap

OK! :-) scenario = {¢p, i} — a0 I a1
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No cycle

e No conflict

c1 M* g —0O m ap * ap
o—f{p} {6} — i —0
fref —o—f7]

forfi
Cannot conclude... :-|
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No cycle

e No conflict

forfi
Cannot conclude... :-|
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No cycle

e No conflict

o All leaves are

Cannot conclude... :-|
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No cycle

e No conflict

o All leaves are

fref —o—f7]

OK! :—) {ao} — C1 r Co {Co, fl} — 4o r ai

Maxime FOLSCHETTE 26/32 GT Dyliss — 2017/11/15



Analysis of Biological Networks o Static Analyses o Static Analysis by Abstract Interpretation
Implementation of the Abstract Interpretation

Complexity:
e Computation of the local causality graph:

e Polynomial in the number of automata
e Exponential in the number of local states of each automata (usually very low, max. 4)

o Analysis of the graph (sufficient condition):
o Polynomial in the size of the abstract graph

e Enumeration of the subsets of solutions (if needed):
o Exponential in the size of the abstract graph
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Implementation of the Abstract Interpretation

Complexity:
e Computation of the local causality graph:
e Polynomial in the number of automata
e Exponential in the number of local states of each automata (usually very low, max. 4)
o Analysis of the graph (sufficient condition):
o Polynomial in the size of the abstract graph
e Enumeration of the subsets of solutions (if needed):
o Exponential in the size of the abstract graph

— Very efficient on biological networks: many components with few local states

Model || Automata | Actions | States libddd* GINsim? | PINT?

egfr20 35 670 257 <1s 0.02s
tcrsigd0 54 301 273 00 0.02s
tcrsig04 133 1124 219 [>1min — oo] 0.03s
egfr104 193 2356 230 [>1min — oo] 0.16s

L LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]

2 TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]

3 Loic Paulevé [http://loicpauleve.name/pint/]

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]

egfrl04 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]
tersigd0 : T-Cell Receptor (40 components) [Klamt et al., 2006]

tersig94 : T-Cell Receptor (94 components) [Saez-Rodriguez et al., 2007]
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Ongoing Work

Maxime FOLSCHETTE 28/32 GT Dyliss — 2017/11/15



Analysis of Biological Networks o Ongoing work in IRISA

TGF-B Pathways Project

« Modélisation des réseaux d'influence du TGF-B lors de la progression tumorale pour
I'identification de cibles thérapeutiques »

ICGC
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TGF-B Pathways Project

« Modélisation des réseaux d'influence du TGF-B lors de la progression tumorale pour
I'identification de cibles thérapeutiques »

ICGC

l

Genes d'intérét (1000 ? 10000 ?)
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TGF-B Pathways Project

« Modélisation des réseaux d'influence du TGF-B lors de la progression tumorale pour
I'identification de cibles thérapeutiques »

ICGC

l

Genes d'intérét (1000 ? 10000 ?)

i \

Extraction de Patwhay Commons

— BRAvo
\

Graphe + niveaux

|

Analyse du graphe :
recherche d'incohérences — IGGY

|

Analyse personnalisée

Discrétisation
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Inconsistency Search With Coloring

e Some observations from experiments give an initial coloring
¢ Propagate the coloring to neighbor nodes
* Minimize inconsistencies

e Minimize the repairs to fix the inconsistencies

Cohérent

E
B

Activation
———1 Inhibition

O Sur-exprimé (+)
. Invariant (0)
. Sous-exprimé (-)

Incohérent

g

{e) )
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Summary

Frameworks: modeling biological processes
e Thomas modeling (historically widespread)
o Asynchronous Automata Networks (generalization)

o Hybrid Thomas modeling (generalization)

Model completion: inferring missing information on the model
e Hybrid Hoare logic (parameters/logical gates on Hybrid Thomas modeling)

e Continuous transitions (logical thresholds from expression profiles)

Dynamic analyses: explore the dynamics of a model
o p-calculus & Answer Set Programming (exhaustive)

o Abstract interpretation (approximations)
TGF-B pathways project: my work here as a postdoc

e Extract and build a big graph from databases

e Search for inconsistencies in cancerous types
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Collaborations

§ [
Olivier ROUX Morgan MAGNIN Emna BEN ABDALLAH Tony RIBEIRO

Katsumi INOUE Martin LANGE Loic PAULEVE Jean-Paul COMET Jonathan BEHAEGEL
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The Reachability Problem

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

o [nitial state

(a1, bo, co, do)
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The Reachability Problem

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

o [nitial state

(a1, bo, co, do)
o Objective
[d2]

— Concretization of the objective = scenario

ao—>COF)C1ZZbo—)doﬁd122C1—>b0F)b122b1—>d17d2
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Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

— Directly checking R is hard (exponential)

— Rather check approximations P and Q so that: P= R= Q
Computing P or Q is much simpler (roughly polynomial)

Exact solution
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Over-approximation

\

Exact solution
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Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

— Directly checking R is hard (exponential)

— Rather check approximations P and Q so that: P= R= Q
Computing P or Q is much simpler (roughly polynomial)

-Q

Over-approximation

\

Exact solution

Under-approximation
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Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

— Directly checking R is hard (exponential)

— Rather check approximations P and Q so that: P= R= Q
Computing P or Q is much simpler (roughly polynomial)

-Q

Over-approximation

\

Exact solution

Under-approximation
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Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

— Directly checking R is hard (exponential)

— Rather check approximations P and Q so that: P= R= Q
Computing P or Q is much simpler (roughly polynomial)

-Q

Over-approximation

\

Exact solution

Under-approximation
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Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

— Directly checking R is hard (exponential)

— Rather check approximations P and Q so that: P= R= Q
Computing P or Q is much simpler (roughly polynomial)

Over-approximation

\

Exact solution

Under-approximation
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are

ara —
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are

ag ' a; —mO—>
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are

ag I'* ap
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are

ag I'* ap
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are

ag I'* ap
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are

o
ag I'* ap

{co. i} = a " a
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Abstract Interpretation (Under-approximation)

[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are

0
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Abstract Interpretation (Under-approximation)

[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are

0

cM*c *)
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are

cM*c —>

{a1, i} 2l c = {a}—aT a
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

c1 M cg —0O m ap M ag
o fi P fo —O

fref —o—f7]

for*f
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

for*f
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b)

e No conflict

o All leaves are

fref —o—f7]

{ao} — C1 r Co {Co, fl} — dp r ai
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Implementation of the Abstract Interpretation

Complexity:
e Computation of the local causality graph:

e Polynomial in the number of automata
e Exponential in the number of local states of each automata (usually very low, max. 4)

o Analysis of the graph (sufficient condition):
o Polynomial in the size of the abstract graph

e Enumeration of the subsets of solutions (if needed):
o Exponential in the size of the abstract graph
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Complexity:

e Computation of the local causality graph:

Implementation of the Abstract Interpretation

e Polynomial in the number of automata
e Exponential in the number of local states of each automata (usually very low, max. 4)
o Analysis of the graph (sufficient condition):

o Polynomial in the size of the abstract graph

e Enumeration of the subsets of solutions (if needed):
o Exponential in the size of the abstract graph

— Very efficient on biological networks: many components with few local states

Model || Automata | Actions | States libddd* GINsim? | PINT?

egfr20 35 670 257 <1s 0.02s
tcrsigd0 54 301 273 00 0.02s
tcrsig04 133 1124 219 [>1min — oo] 0.03s
egfr104 193 2356 230 [>1min — oo] 0.16s

1 LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]
2 TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]
3 Loic Paulevé [http://loicpauleve.name/pint/]

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]

egfrl04 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]
tersigd0 : T-Cell Receptor (40 components) [Klamt et al., 2006]

tersig94 : T-Cell Receptor (94 components) [Saez-Rodriguez et al., 2007]

Maxime FOLSCHETTE

40/32
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Under-approximation

by P* by —O

[bo }— b1 77 by —O——[a1}— a1 77 a1 —0

do * da G
Required process by r* by —O

do M'* da Objective

o) Solution to an objective bo P* by c Mg —0
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Under-approximation

Sufficient condition:

® no cycle

o each objective has a solution

by ™ by —O

m by P*%%—> a r*a; —0O

do * da G
Required process by r* by —O

do M* dp Objective

(e} Solution to an objective by I'* by c Mg —0
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Under-approximation

Sufficient condition:

® no cycle

o each objective has a solution

P is true = R is true

by ™ by —O

m by P*%%—> a r*a; —0O

do * da G
Required process by r* by —O

do M* dp Objective

(e} Solution to an objective by I'* by c Mg —0
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bo*by —>O

by * by —O

by I* by —O

Maxime FOLSCHETTE

(Y
[ b0 [ b1 * by —0O——{a1]

Under-approximation

Sufficient condition:

® no cycle

. - ;

a1 l*a; —0O

ap M* a; —>

c1M*cg —0O a; Magp |

co e —0O m

ap M ag —0O
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Under-approximation

Sufficient condition:

® no cycle

. - ;

P is false = Inconclusive

bo*by —O ail*a; —O0O

m by * by —>O—> ap M* a; —>

do 7* da ®
b1 by * by —O cil*cg —0O a; Magp |
bo 7* by 4—4 r*c —» r*ap —O
Maxime FOLSCHETTE 41/32
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Over-approximation

Necessary condition:

by P* by —O——di}— di F*di —O

dy M dy

by r* by —O0—3[c1}— o g —O0——a}— a1 P*ag
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Over-approximation

Necessary condition:

There exists a traversal with no cycle

e objective — follow one solution
e solution — follow all processes

o process — follow all objectives

bo 1 by —0——{di | di 1" dy —O

dy M dy

by r* by —O0—3[c1}— o g —O0——a}— a1 P*ag
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Over-approximation

Necessary condition:
Fhere-exists—a—traversal with no cycle

o obicctivesf ;

e solution — follow all processes

o process — follow all objectives

by P* by —O——di}— di F*di —O

dy M dy

by r* by —O0—3[c1}— o g —O0——a}— a1 P*ag
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Over-approximation

Necessary condition:
Fhere-exists—a—traversal with no cycle

o obicctivesf ;

e solution — follow all processes

o process — follow all objectives

Q is false = R is false

bo 1 by —0——{di | di 1" dy —O

dy M dy

by r* by —O0—3[c1}— o g —O0——a}— a1 P*ag
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Over-approximation

Necessary condition:

There exists a traversal with no cycle

e objective — follow one solution
e solution — follow all processes

o process — follow all objectives

do P dy

by I'* by —O a1 '* a3 —0O

by r* by —0O
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Over-approximation

Necessary condition:

There exists a traversal with no cycle

o objective — follow one solution
e solution — follow all processes

o process — follow all objectives

R is true = Inconclusive

do r*dp

by I'* by —O a1 '* a3 —0O

by r* by —0O
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The Polyadic p-caculus
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The Polyadic p-caculus

CTL*
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The Polyadic p-caculus

CTL*

Modal .
p-calculus

I

S~—

Explicit fixed points
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The Polyadic p-caculus

CTL*

Modal

p-calculus
IN

S~

Polyadic

p-calculus
IN

@

Explicit fixed points

Multiple dynamical tokens
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Modal and Polyadic p-calculus

[Andersen, Technical report, 1994]

LTL: Implicit fixed point of the “Until” operator
p U g = "Either g, or p and the next state also verifies p U q"
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Modal and Polyadic p-calculus

[Andersen, Technical report, 1994]

LTL: Implicit fixed point of the “Until” operator
p U g = "Either g, or p and the next state also verifies p U q"

(Modal) p-calculus makes such fixed points explicit

p=plopleApleVe|Op|Op|uXe|vXe|X
o Basic property: p (“p is verified in this node™)

o Modal operators: [J (“for all successors”), ¢ (“there exists a successor”)
o Fixed points: p (least fixed point), v (greatest fixed point)
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Modal and Polyadic p-calculus

[Andersen, Technical report, 1994]

LTL: Implicit fixed point of the “Until” operator
p U g = "Either g, or p and the next state also verifies p U q"

(Modal) p-calculus makes such fixed points explicit

p=plopleApleVe|Op|Op|uXe|vXe|X
o Basic property: p (“p is verified in this node™)

o Modal operators: [J (“for all successors”), ¢ (“there exists a successor”)
o Fixed points: p (least fixed point), v (greatest fixed point)

Polyadic (modal) p-calculus allows to manipulate several tokens in parallel
po=pilijli=jl-oleneleVe|Op|Op|pXe|vXe|X
Token manipulations:

o i =j (“make tokens i and j point to the same node")
e i + j (“move token i to the position of token j")
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Examples with Modal p-calculus

No tokens: only one evolution is studied

Atomic property (p, g, r)

[pl = {p}

®
®
:

Maxime FOLSCHETTE 45/32 GT Dyliss — 2017/11/15



Analysis of Biological Networks o Static Analysis on the Process Hitting o Exhaustive Analysis with p-calculus

Examples with Modal p-calculus

No tokens: only one evolution is studied

Atomic property (p, g, r)

[pl = {p}
lgvr]={q:r}

L]
®
.
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Examples with Modal p-calculus

No tokens: only one evolution is studied

Atomic property (p, g, r)

[pl = {p}
lgvr]={q:r}

@
@ Possible future (“may”)
< [0 gl = {p}
N
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Maxime FOLSCHETTE

Examples with Modal p-calculus

No tokens: only one evolution is studied

Atomic property (p, g, r)

[pl = {p}
lgvr]={q:r}

Possible future (“may”)
[0 q] = {p}

Necessary future (“must”)
[Oq]=2
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Maxime FOLSCHETTE

Examples with Modal p-calculus

No tokens: only one evolution is studied

Atomic property (p, g, r)
[Pl = {r}
[gvr]={qr}

Possible future (“may”)

[0 q] = {p}

Necessary future (“must”)
[Dq] =2
[O Pl ={q:r}
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Examples with Polyadic p-calculus

Atomic property (p, g, r)

[ A r2] = {(p,r)}

®
®
5
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Examples with Polyadic p-calculus

Atomic property (p, g, r)
[p1 A r2] ={(p, )}
[pil = A{(p, P): (P, q): (p. r)}

®
®
5
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Examples with Polyadic p-calculus

Atomic property (p, g, r)
[pr A 2] ={(p,r)}
[p] = {(p. P)i (P, q): (P, r)}
Token affectation (i + j)
[{2 <= 1} pr A p2] = {(p. P)i (P, )i (P, 1)}

[CEom0)
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Examples with Polyadic p-calculus

Atomic property (p, g, r)

[Py A r2] ={(p, r)}

[p1] = {(p; P): (P a): (P, 1)}
Token affectation (i + j)

[{2 < 1} p1r A pa] = {(p, P): (p: @): (P, 1)}
Token comparison (i = j)

[1=2]={(p,p)i (a,9) (r,r)}

[CEom0)
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[CEom0)

Maxime FOLSCHETTE

Examples with Polyadic p-calculus

Atomic property (p, g, r)
[p1 A r2] ={(p, )}
[pil = A{(p, P): (P, q): (p. r)}

Token affectation (i < j)

[{2 < 1} p1r A pa] = {(p, P): (p: @): (P, 1)}
Token comparison (i = j)

[1=2] = {(p.p)i(g,q): (r,r)}
Possible future (“may”)

[01 gl = {(p,p); (P, q); (P, r)}
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CEoso)

Maxime FOLSCHETTE

Examples with Polyadic p-calculus

Atomic property (p, g, r)
[p1 A r2] ={(p, )}
[pil = A{(p, P): (P, q): (p. r)}

Token affectation (i <+ j)

[{2 < 1} p1r A pa] = {(p, P): (p: @): (P, 1)}
Token comparison (i = j)

[1=2] = {(p.p)i(g,q): (r,r)}
Possible future (“may”)

[01 gl = {(p,p); (P, q); (P, r)}

Necessary future (“must”)
[0y q] =2
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Examples with Polyadic p-calculus

Least fixed point ()

¢5 = MX(DlL A DQL) \ <>1<>2X
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e
] ]
v v
] ]
-

Maxime FOLSCHETTE

Examples with Polyadic p-calculus

Least fixed point ()
(b = MX(DlL A DQL) vV <>1<>2X

Iterations:

{(
{(a1, b1); (a2, b2)}
{(a1, b1); (a2, b2); (a3, b3) }
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e
] ]
v v
] ]
-

Maxime FOLSCHETTE

Examples with Polyadic p-calculus

Least fixed point ()
(b = MX(DlL A DQL) vV <>1<>2X

Iterations:
[¢]o =2
[#]: = {(a1, b1)}
[#]2 = {(a1, b1); (a2, b2)}
[ols = {(a1, b1); (a2, b2); (a3, b3)}

Generalization:

[¢] = {(ai, bi) | i € [1; min(m, n)]}
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e
] ]
v v
] ]
-

Maxime FOLSCHETTE

Examples with Polyadic p-calculus

Least fixed point ()
(b = MX(DlL A DQL) vV <>1<>2X

Iterations:
[¢]o =2
[#]: = {(a1, b1)}
[#]2 = {(a1, b1); (a2, b2)}
[ols = {(a1, b1); (a2, b2); (a3, b3)}

Generalization:

[¢] = {(ai, bi) | i € [1; min(m, n)]}

Idea: use one (or n) token per automata
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Applications of the Polyadic p-calculus

Objective: Unify formulas for many dynamical problems
Not always possible with classical temporal logics (LTL, CTL, CTL*):

1) From the initial state (a, b, z) = (0,0, 0), is it possible to reach z = 27
(a=0Ab=0Az=0)=EF(z=2)

2) Does (0,0, 0) belong to an attractor?
(a=0Ab=0Az=0)=NLVAGEF(a=0Ab=0Az=0))
3) What is the set of attractors of the model?
77?7 — Requires a quantification on the set of all states

Idea: Use polyadic p-calculus with one token per automata
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Search for Attractors with Polyadic p-calculus

O—(O—
A O ~pores o
\O/ | O/ \ S

Catt =y «— xpvW.(uZ. (x =y) vV (0x2)) A (W)

Preach

Pexplore
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Search for Attractors with Polyadic p-calculus

O—(O—
A O ~pores o
\O/ | O/ \ S

Catt =y «— xpvW.(uZ. (x =y) vV (0x2)) A (W)

Preach

Pexplore

° [[‘preach]] = {(5; t) | s =% t}
@reach = "There exists a path from x to y"

Maxime FOLSCHETTE 49/32 GT Dyliss — 2017/11/15



Analysis of Biological Networks o Static Analysis on the Process Hitting o Exhaustive Analysis with p-calculus

Search for Attractors with Polyadic p-calculus

O—(O—
A O ~pores o
\O/ | O/ \ S

Catt =y «— xpvW.(uZ. (x =y) vV (0x2)) A (W)

Preach

Pexplore

° [[‘preach]] = {(5; t) | s =% t}
@reach = "There exists a path from x to y"

° [[Qoexplore]] = {(5; f) | Vs',s =% s/ = s/ —* t}
Pexplore = “All successors of x can reach y”

Maxime FOLSCHETTE 49/32 GT Dyliss — 2017/11/15



Analysis of Biological Networks o Static Analysis on the Process Hitting o Exhaustive Analysis with p-calculus

Search for Attractors with Polyadic p-calculus

Q—>Q—>
\ O = peors e
\O/ | O/ \ S

Catt =y «— xpvW.(uZ. (x =y) vV (0x2)) A (W)

Preach

Pexplore

° [[‘preach]] = {(5; t) | s =% t}
@reach = "There exists a path from x to y"

° [[Qoexplore]] = {(5; f) | Vs',s =% s/ = s/ —* t}
Pexplore = “All successors of x can reach y”

o [patt] = {(s;5) | Vs',s =* ' = s’ —* s}
@att = "“x belongs to an attractor”
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Search for Disruptions with Polyadic p-calculus

Q
O/ \O
\ = disruption regarding a
/N
@ O

Paer(a) = (MW.(X = a) Vv (0xW) )/\
Ox{x « y}(vZ Ay = a) A (0, 2))

Pnoreach
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Search for Disruptions with Polyadic p-calculus

Q
O/ \O
\ = disruption regarding a
/NS
@ O

Paer(a) = (NW.(X = a) Vv (0xW) )/\
Ox{x « y}(VZ.—'(y =a) A (DyZ))

Pnoreach

° [[Lpreach]] = {(S; t) | s —=* a}
@reach = “There exists a path from x to a"”
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Search for Disruptions with Polyadic p-calculus

Q
O/ \O
\ = disruption regarding a
/NS
@ O

Paise(3) = (LW.(x = a) V (0 W) ) A
Ox{x « y}(vZ Ay = a) A (0, 2))

Pnoreach

° [[‘Preach]] = {(S; t) | s —=* a}
@reach = “There exists a path from x to a"”

° [[Sonoreachﬂ = {(S; t) | _‘(t —* a)}
@noreach = "“There exists no path from y to a"
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Search for Disruptions with Polyadic p-calculus

Q
O/ \O
\ = disruption regarding a
/NS
@ O

Paisr(@) = (HW.(x = a) V (0xW) ) A
Ox{x « y}(vZ Ay = a) A (0, 2))

Pnoreach

° [[‘Preach]] = {(S; t) | s —=* a}
@reach = “There exists a path from x to a"”

* [enoreacn] = {(si t) [ ~(t =~ a)}
@noreach = "“There exists no path from y to a"

o [pasl = {(sit) [ s = t A5 —* aA~(t >* 2)}
@disr = “There is a disruption between x and y"
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Bisimulation with Polyadic p-calculus

Generic bisimulation between two models:

@pisim = vX.( /\ p1 & p2) A (O102X A 0201X)
pEP

Bisimulation only on two sets of observable components O and O’:

Pbisim-obs = VX'( /\ /\ pi < pj) A (D%DOOL/OO’X)

peP (i;j)eC
where:
Os¥ = A OV OsV =\/ 0¥
i€S icS
OV =vY. VALY OV =puY. VWV OV
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Conclusion on Polyadic p-calculus

Properties expressed so far:
e Enumeration of attractors
e Enumeration of disruptions
¢ Bisimulation between two models (regarding a set of observables)

e Highlighting Zeno behaviors

Aim: Unification of properties without quantifiers
Complexity: Exponential (equivalent to building the state graph)

Outlooks:
e New formulas
e Implementation

o Generate p-calculus formulas? (More readable interface)
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Hybrid Thomas Modeling

[Cornillon et al., Modelling Complex Biological Systems in the Context of Genomics, 2016)

Tz

lacI repressor regulation of the lactose operon in E. Coli

A = NRI protein + gInG gene + glnA promoter
B = lacl gene repressor + glnK promoter

m; = glnA promoter is regulated by phosphorylated NRI
my = glnA promoter is also regulated by lacl
m3 = lacl gene repressor is regulated by NRIp
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Hybrid Thomas Modeling

B4

Cazo
Cpo1

Ca{ms}.0
CB,z,0

»
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Hybrid Hoare Logic to Infer Parameters

o [ Ts Ty T\ (Ti\ (p -
{,_f} T |;|slide™(B)|;| T T { 0 H
“) \B+ A— B-) \A+ 0
B slide(B)
| /
Caz0 Cafmya Ca{m}.2 N
Ceo,1 B.2,1 Ca {m11 N
0 ) N
Ca {m3}.0
Cgo0
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Hr = (~(Cpo.0 > 0) V(1> 7} — Cozo- 1))
A(Cafmy,mpa > 0) A =1= Ca fmy,msp1 - T1)
A (~(Camyya > 0)V =(1 > 78 = Ca )+ T2))
A ((Caz0 > 0)V ~(Cafmyy1 <O)V (1 <78 = Cafmya- To))
A(CBr1<0)A(1=0-Cpg1- T2)
A (~(Ca,mpy1 <0) V(0 < 1= Cp (myy1- T3))
A (Cafmy2 <OA (T =0= Cafmy.2 T3))
A (~(Ca,mpy1 > 0) V(0> 1= Cg (my}.1- T3))
A (~(Cafmymsy2 <OV (0 <73 = Ca (mymy}2 - Ta))

A (Co (im0 > O) A (TS =1= Cp (mpy0- Ta) -
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A Simplified Circadian Cycle Model

Simplified circadian cycle Day/Light Cycle
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(Y = 0.12) A (xS = 0.12) A (=0 = ) A (7} = 1) A (€L {5y 0 > O A () =

- (CL, {ms},0 X 8- A (=((Cg,,0 > O) A (wé/ > (7k = (Cg, 2,0 X 6:6))) A (=((Cpe, 5,1 < O) A (k. <
The = (Cpe, 1,1 X6 A =((Cx, 5,0 > OA(ry > (k= (Cx, g0 X 6-MA (] = Q=7 NA((x} = 79I A
(mhe = 7S YAy = = MM A= = ) A (Cx, o1 < DA = (7% = (Cx, 5,1 X 0NN A (~(Cg, 5,0 >
0 A (m2" > (72 = (Cgz,0 X 0-6D) A (—((Cpe,z,1 < 0) A (w3 < (72 = (Cpe, 1 X 0-6)) A =((Cp,zr,0 >
A (72" > (7 = (€L g0 X 0D A (72 = 0) A((CL g0 < O) = (n2) < (w2 = (Cp g0 X 0O A (% =
A= NA2 =7t YA (72 = mp ) A (xd = 7 MNS A (7 =) A (Cg 1 < O) A (3 =
(72 = (Cg, .1 XSADNA(Cpe, {may,1 < OA (o < (M = (Cpe, {ma} 1 XS-ONA(=((CL g0 > OA(mE >
(73 = (CLo,0 X 5O A ~((Cx, .1 < O A (ny < () = (Cx, 2,1 X 54 A ((Tpe = D A (Cpe {m2},1 >

0) = (w3 > (mpe = (Coc {m2},1 X 54D A (G ms == w2 N A3 = w2 ) A (= 7Y A (Y =

2 MM A (=] =0 A (Cp g1 <O A (x} = (nf — (CL 2.1 X 04T A (~(Cq may,1 < O A (7§ <
(g = (Cg, {ma},1 X 04D A (~(Cpe, {ma},1 < O A (mpc” < (wgc (Coc, {ma},1 X 04D A ~((Cx (ma},1 <
0) A (%) < (x§ — (Cx {may,1 X 04D A (=] = (1 — «f’)) A =3 ) A (e = 73 ) A (k=
TN A (7pe =D A (Cpe, {m2y,0 > O A (mpe” = (mhe = (Cpe, {m2},0 % 553 A ((~((Cq, (m1,m3},1 <

VNGRS (wg—(c {ml,m3},1 X 5SIMA(CL g1 < OJA(rS' < (7} = (CLz,1 X5EN A ((Cx {may,1 <

0) A (%) < (7% = (Cx,{may,1 X -5 A (75 = 1) A (G, {ml ma}a >0 = (g’ >
(73 = (Cg fm1,m3},1 X 55 A (w5 = (1 = g NA (5 = mg Y A (=} = 7} ) A (rS = 75 A (= =
DA (Cx, {may,0 > O A (TS = (7% = (Cx {may,0 X 0-6))) A ((ﬁ((c mi,m3pa <O A (xS <

(7§ = (Cq, {m1,m3},1 X 0-6D) A (~((Cpe, gmay,0 > O A (75" > (78 = (Cpoe {may,0 X O 6)>)>A =€ {msy,1 <
) (wﬁ’ < (wﬁ (€L, fmsy,1 X 0O A (% = (@ = 75N A (7§ = 75") A (whe = 75 /) A (70 =
T2 A (7 = 1) A (Cq, {m1,m3p,0 > O A (g = (7] = (Cg i, 3,0 74 ) A (( (Cpe, 2,0 >

0) (mp’ > (=} be ~(Cpe, 0 X 4-5)) A (=((CL, (s} 1 <A’ <<7r — (€L {m5},1 X 45 A(Cx, {may,0 >
O A (nl) > (7% = (Cx {may,0 X 45 A (mf = (1 = 7§ A (whe = 78" ) A (=] = 78y A (], =
7S A (78 = 0) A (Cpe, 5,1 < 0) A (wf,c’ = (8, — (cpc 2,1 X 0.9 A (=((Cq, {m3},0 > O A (xS >
(8 — (¢, {m3) 0 X 0.9))) A (~((Cp, {ms},1 < O) A ( f < (=8 —(c, () 1 X 0.9))) A ﬁ«cx {ma)0 >

0 A (xS > (78 = (Cx fmay,0 X QMM A (75 = @ = wb . N A (G = 1) A (=8 = =]') A (2 = =L
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Manually simplified constraints

Simplified circadian cycle

Day/Light Cycle

Célérités sur g et pc

Célérités sur L et X
Ce.z,0 <0 Ce.{pe,L}o > 0 ) —o%5 < CLoo <0 Cx.2,0 <0
Ce2,1 <0 0< Gy ipe,iy1 < 553 CLz1<0 —1 < Cxo <?
Cg,{L},O <0 Cpc,Z,O < 812 CL,{X},O >0 0< CX,{L},O < 51
Ce 131 <0 Coc,0,1 = —ﬁl Clix31>0 Cx, {131 >0
Ce.{pcy,0 >0 0 < Cpcfero < 513
Cg,{pC},l >0 0< Cpc,{g},l <53
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Results with compatible constraints from another work

2 5
K4
J
15 F 4
’
G
! 5
s
05
4
0 b
0
A & mPerl
B mPERI
100 A mPer2 o

@ mPER2 [ .

75

50
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