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Motivations: Learning Systems Dynamics

Research area

Idea: given a set of input/output states of a black-box system, learn its
internal mechanics.

Input Output?

Ribeiro et al (LS2N, CRIStAL, NII) Learning dynamics from any semantics 25th October 2021, ILP 4 / 19



Motivations: Learning Systems Dynamics

Research area

Discrete system: input/output are vectors of same size which contain
discrete values.

100 011?
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Motivations: Learning Systems Dynamics

Research area

Dynamic system: input/output are states of the system and output
becomes the next input.

Discrete
State

Discrete
State
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System
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Motivations: Learning Systems Dynamics

Research area

Goal: produce an artificial system with the same behavior as the one
observed, i.e., a digital twin.
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Motivations: Learning Systems Dynamics

Research area

Representation: propositional logic programs with annotated atoms
encoding multi-valued variables.
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Motivations: Learning Systems Dynamics

Research area

Method: learn the dynamics of systems from the observations of some of
its state transitions.
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a(0,T) :- a(2,T-1)
a(1,T) :- a(0,T-1), b(0,T-1).
a(2,T) :- a(1,T-1)
a(2,T) :- a(0,T-1), b(2,T-1).
...
b(0,T) :- a(1,T-1).
b(1,T) :- b(2,T-1).
b(2,T):- b(2,T-1).
...

DATA

RESULTS
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Motivations: Learning Systems Dynamics

Motivation

Data: time series of gene expression levels in a organic cell.
Goal: model gene interactions to understand their influences.

000 010?

Example (Possible Applications)

Bioinformatics: Construct gene regulatory networks.

Robotics: Learn action models from robot observations.
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Motivations: Learning Systems Dynamics

Motivation

Data: observations of environment evolution according to a robot actions.
Goal: produce a predictive model of the environment for action planning.

000 010?

Example (Possible Applications)

Bioinformatics: Construct gene regulatory networks.

Robotics: Learn action models from robot observations.
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Problem: Dynamical Semantics

Dynamical Semantics
Boolean network transitions differ according to the update semantics used.

a b f(a) := not b.
f(b) := not a.

Asynchronous General
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Synchronous: all variables are updated

Asynchronous: only one variable is updated

General: any number of variables can be updated
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Problem: Dynamical Semantics

What is a semantics?

For those three semantics at least, it is about computing the next state by
selecting among applicable local rules the ones that will be applied.

000 010
Applicable

Rules
Applied
Rules

Semantics: what is an applicable rule and what is a valid set of applied rule.

The three semantics that are considered here differ on the selection but
share the same definition of what is an applicable rule.
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Problem: Dynamical Semantics

Learning algorithm intuition: classification problem

What is an applicable rule?

The conditions so that a variable can take a
certain value in next state.

Equivalent to a classification problem: for each value of a variable, what is
a typical state where the variable can takes this value in the next state ?
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Problem: Dynamical Semantics

General Usage LFIT Algorithm (GULA) ouptut

a b f(a) := not b.
f(b) := not a.

Asynchronous General
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// f(a) := not b

a0t ← b1
t−1

a1t ← b0
t−1

// f(b) := not a

b0
t ← a1t−1

b1
t ← a0t−1

// f(a) := not b

a0t ← b1
t−1

a1t ← b0
t−1

// f(b) := not a

b0
t ← a1t−1

b1
t ← a0t−1

// Default rules

a0t ← a0t−1

a1t ← a1t−1

b0
t ← b0

t−1

b1
t ← b1

t−1

// f(a) := not b

a0t ← b1
t−1

a1t ← b0
t−1

// f(b) := not a

b0
t ← a1t−1

b1
t ← a0t−1

// Default rules

a0t ← a0t−1

a1t ← a1t−1

b0
t ← b0

t−1

b1
t ← b1

t−1
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Problem: Dynamical Semantics

Pseudo-idempotent semantics

GULA can model observations from any pseudo-idempotent semantics.

010 {a1t , b1t , ch0, ch2}+ 012

{a0t , a1t , b0t , b1t , ch2}010

002 102

+

Feature state Set of atoms
Set of target states

s D
DS

s D ′

DS
Union

Semantics

−→ DS(s,D) = DS
(
s,

⋃
s′∈DS(s,D)

s ′
)

where DS is the dynamical semantics, and D is the head of rules of a
multi-valued logic program that match the sate s.
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Learning From Any Semantics

What about others semantics?

Three examples of arbitrary semantics.

a b f(a) := not b.
f(b) := not a.

Degradation Inverse all valuesAll or nothing change
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How can we learn a program able to reproduce these behaviors?
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Learning From Any Semantics

What is impossible?

Problem: If GULA learns a program from those transitions and we apply
the synchronous semantics, this is what happens:

a b f(a) := not b.
f(b) := not a.

Degradation Inverse all valuesAll or nothing change
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Can we prevent impossible transitions?
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Can we prevent impossible transitions? Yes: with constraints!
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Learning From Any Semantics

Classification modeling of impossibility

Idea: GULA can learn constraints using observations as negative examples.

Degradation Inverse all valuesAll or nothing change
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Learning From Any Semantics

Examples of learned programs

Degradation Inverse all valuesAll or nothing change
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a := not b
a(0,T) :- b(1,T-1).
a(1,T) :- b(0,T-1).
b := not a
b(0,T) :- a(1,T-1).
b(1,T) :- a(0,T-1).
Conservation rules
a(0,T) :- a(0,T-1).
a(1,T) :- a(1,T-1).
b(0,T) :- b(0,T-1).
b(1,T) :- b(1,T-1).
Constraints
:- a(0,T), b(1,T), b(0,T-1).
:- a(1,T), b(0,T), a(0,T-1).
:- a(1,T), b(0,T), b(1,T-1).
:- a(0,T), b(1,T), a(1,T-1).

a := not b
a(0,T) :- b(1,T-1).
a(1,T) :- b(0,T-1).
b := not a
b(0,T) :- a(1,T-1).
b(1,T) :- a(0,T-1).
Conservation rules
a(1,T) :- a(1,T-1).
b(1,T) :- b(1,T-1).
Degradation
a(0,T) :- a(1,T-1).
b(0,T) :- b(1,T-1).
Constraints
:- a(1,T), b(1,T), a(1,T-1).

a := not b
a(0,T) :- b(1,T-1).
a(1,T) :- b(0,T-1).
b := not a
b(0,T) :- a(1,T-1).
b(1,T) :- a(0,T-1).
Inverse value
a(0,T) :- a(1,T-1).
a(1,T) :- a(0,T-1).
b(0,T) :- b(1,T-1).
b(1,T) :- b(0,T-1).
Constraints
:- a(1,T), b(1,T), a(1,T-1).
:- a(0,T), b(0,T), a(0,T-1).
:- a(1,T), b(1,T), b(1,T-1).
:- a(0,T), b(0,T), b(0,T-1).
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Conclusions

Conclusions

Previous works: Synchronous deterministic transitions only.

Novelty: Learn from any memory-less discrete dynamical semantics.

Application: Selection of a semantics, can be done a posteriori.

Weakness: Too costly/sensitive to deal with real systems.

Outlook: Development of heuristic approaches to tackle real data.

Source code (Python) available as open source on Github.

Join us at posters session for details about theory and applications.

Manuscript
Source Code
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https://hal.archives-ouvertes.fr/hal-02925942
https://github.com/Tony-sama/pylfit
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