
Learning From Interpretation Transitions with
Unknowns

Tony Ribeiro1,3,4, Maxime Folschette2, Morgan Magnin1,3, Kotaro Okazaki4,
Kuo-Yen Lo4, Antoine Roquilly5,6, Jérémie Poschmann6, and Katsumi Inoue3,1

1 Centrale Nantes, CNRS, Laboratoire des Sciences du Numérique de Nantes, LS2N,
UMR 6004, F-44000 Nantes, France

2 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
3 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430,

Japan
4 SONAR Inc., 8-16-6, Ginza, Chuo-Ku, Tokyo 104-0061, Japan

5 Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, F-44000
Nantes, France

6 Nantes Université, CHU Nantes, Center for Research in Transplantation and
Translational Immunology, UMR 1064, ITUN2, F-44000, Nantes, France

Abstract. One major challenge when learning dynamical models from
actual time series data consists in tackling partial data. Learning from
interpretation transition (LFIT) automatically constructs a model of the
dynamics of a system from the observation of its state transitions. In this
paper, we extend the LFIT framework to learn from transitions between
partial states where some variable values are unknown. By modeling the
unknown, we achieve an overestimation of the real system regarding both
its dynamics and variables interactions. We show through theoretical
results the correctness of our approaches and its effectiveness through an
experimental evaluation on benchmarks from biological literature.

Keywords: XAI · logical modeling · uncertainty · dynamic systems

1 Introduction

One major challenge when learning dynamical models from actual time series
data consists in tackling partial data. For example, in Systems Biology, when
trying to contribute to the identification of biological markers critical to the
development of hospital-acquired pneumonia [10], a major challenge for modelers
relies in overcoming the absence of some data in existing cohorts. Some data
may be missing, because some variables were not accessible by experimental
means (or were simply not considered of interest at the time of collecting data
on real cohorts). Learning from partial data implies to extend existing learning
approaches to data with unknowns among the state variables. This challenge
relates to a well-known problem in the field of discrete-event systems, which is

The 4th International Joint Conference on Learning & Reasoning, Nanjing University
International Conference Center, Nanjing, China.

2 T. Ribeiro et al.

opacity [8]. Since two decades, opacity has raised much interest in cryptography
[9] and model-checking [1,6]. In these contexts, systems are analyzed to ensure
that certain states or sequences of states remain hidden or protected from an
external agent. For example, this implies that a system’s secret state cannot
be inferred by observing its behavior. When dealing with models of biological
networks, opacity is relevant to understand how certain genes or pathways can
be hidden from experimental observations. Despite being key for making a bridge
between logical approaches and real-life data, opacity has been the subject of
very few studies in the field of Boolean networks [15] and even less in the field
of logic programs.

While the possibility of learning from transitions of partial interpretations
has been briefly illustrated in [5], there has been neither details about its formal
semantics (in particular for a multi-valued setting) nor implemented systems
in the literature. Research regarding learning from incomplete transitions of
(complete but possibly noisy) interpretations, in the context of neurosymbolic
learning [3,4,12,13,14] exists, but their settings are not the same as learning
from transitions of partial interpretations. In this paper, we aim to bring a first
milestone to such a topic, opening the way to various applications hereafter. To
achieve this goal, we propose to extend the Learning From Interpretation Tran-
sition (LFIT) framework [5,16], an inductive logic programming paradigm that
automatically builds a model of the dynamics of a system from the observation
of its state-transitions.

Figure 1 illustrates the general LFIT learning process. Given some raw data,
like time-series of gene expression, a discretization of those data in the form
of state transitions is assumed. From those state transitions, according to the
semantics of the system dynamics, several inference algorithms modeling the
system as a logic program have been proposed. In this paper, we extend the
LFIT framework to learn from transitions between partial states where some
variable values are unknown. We propose a formal modeling for learning from
transitions of partial multi-valued interpretations, to realize the framework to
incorporate into the General Usage LFIT Algorithm (GULA) [16]. By modeling
the unknown, we achieve an overestimation of the real system regarding both
its dynamics and variables interactions. We show through theoretical results
the correctness of our approaches and its effectiveness through an experimental
evaluation on benchmarks from biological literature.

State Transitions Model
of the Dynamics

Learning
Algorithm

LFIT

Time Series Data
Abstraction

Prediction

Query
Answering

Decision
Making

Planning

...

Fig. 1: Assuming a discretization of time series data of a system as state transi-
tions, we propose a method to automatically model the system dynamics.

Learning From Interpretation Transitions with Unknowns 3

2 Dynamical Multi-Valued Logic Program

In this section, the concepts necessary to understand the modeling we propose
in this paper are formalized. Let V = {v1, · · · , vn} be a finite set of n ∈ N
variables, Val the set in which variables take their values and dom : V → {d ∈
℘(Val) | |d| ≥ 2} a function associating a domain (with at least two values) to
each variable, with ℘ the power set. The atoms of multi-valued logic (MVL)
are of the form vval where v ∈ V and val ∈ dom(v). The set of such atoms is
denoted by A = {vval ∈ V × Val | val ∈ dom(v)}. Let F and T be a partition
of V, that is: V = F ∪ T and F ∩ T = ∅. F is called the set of feature variables,
which values represent the state of the system at the previous time step (t− 1),
and T is called the set of target variables, which values represent the state of
the system at the current time step (t). AMVL rule R is defined by:

R = vval00 ← vval11 ∧ · · · ∧ vvalmm

where m ∈ N, and ∀i ∈ J0;mK, vvalii ∈ A; furthermore, every variable is men-
tioned at most once in the right-hand part: ∀j, k ∈ J1;mK, j ̸= k ⇒ vj ̸= vk.
The rule R has the following meaning: the variable v0 can take the value val0 in
the next dynamical step if for each i ∈ J1;mK, variable vi has value vali in the
current dynamical step. The atom on the left side of the arrow is called the head

of R, denoted head(R) := vval00 , and is made of a target variable: v0 ∈ T . The
notation var(head(R)) := v0 denotes the variable that occurs in head(R). The
conjunction on the right-hand side of the arrow is called the body of R, written
body(R), and all variables in the body are feature variables: ∀i ∈ J1;mK, vi ∈ F .
In the following, the body of a rule is assimilated to the set {vval11 , · · · , vvalmm };
we thus use set operations such as ∈ and ∩ on it, and we denote ∅ an empty
body. A dynamical multi-valued logic program (DMVLP) is a set ofMVL rules.

Definition 1 (Rule Domination). Let R1, R2 beMVL rules. R1 dominates
R2, written R1 ≥ R2 if head(R1) = head(R2) and body(R1) ⊆ body(R2).

The dynamical system we want to learn the rules of, is represented by a suc-
cession of states as formally given by Definition 2. We also define the “compati-
bility” of a rule with a state in Definition 5, and with a transition in Definition 6.

Definition 2 (Discrete state). A complete discrete state s on a set of vari-
ables X is a function from X to dom(v). It can be equivalently represented by
the set of atoms {vs(v) | v ∈ X} and thus we can use classical set operations on
it. If s is a complete discrete state, s′ is a partial discrete state iff s′ ⊊ s. We
write SX to denote the set of all (partial or complete) discrete states on X .

Often, X ∈ {F , T }. Moreover, we note vars(s) = {v ∈ X | ∃val ∈ dom(v), vval ∈
s} the set of variables that appear in a discrete state.

Example 1. Let X = {a, b, c}, dom(a) = dom(b) = {0, 1} and dom(c) = {0, 1, 2}.
– ∅ is a partial state, all variables value is unknown.

4 T. Ribeiro et al.

– {a0} is a partial state, both b and c value is unknown.

– {a1, b1} is a partial state, c value is unknown.

– {a1, b0, c2} is a complete state, all variable have a value.

– {a0, a1, c0} is not a discrete state, a has multiple values.

– {a0, b0, c0, c2} is not a discrete state, c has multiple values.

Definition 3 (States with Masking). We call state with masking a couple
s = (sp, sc) ∈ SX×SX so that sc is complete and sp is partial so that sp ⊊ sc. We
denote SXm the set of all states with masking. Moreover, we define: observed(s) =
sp and actual(s) = sc and we extend these notations to a pair of states and a
set of states: observed((s, s′)) = (observed(s), observed(s′)) and actual((s, s′)) =
(actual(s), actual(s′)); observed(S) = {observed(s) | s ∈ S} and actual(S) =
{actual(s) | s ∈ S}.

In other words, the state with masking s = (sp, sc) represents a state that
we can choose to observe as the result of an partial/imperfect observation, or as
the ground truth. In particular, a couple of (complete, partial or with masking)
discrete states (s, s′) ∈ SF × ST is called a transition.

In practice, the ground truth is not accessible, but interesting knowledge
about the system dynamics could still be derived from the partial observation.
Providing some interesting guaranties over these derived dynamics is the goal of
the following formalization. To simplify the graphical representation of states,
each discrete state will be depicted by a sequence of numbers corresponding
to the value of each variable. For instance, the complete state {a0, b0, c0} is
represented by the sequence 000, while {a1, b0, c0} is represented as 100, and
{a1, b1, c1} as 111. Unknown values will be symbolized by ’?’, allowing us to see
at a glance which variables are unknown in each state. For example, the state
{a0} is represented as 0??, and {c1} as ??1. The transition graphs in Figure
2 shows an illustration of a set T of state transitions involving three boolean
variables, highlighting both complete and partial states. On the left the observed
state transitions observed(T) with some unknown values and on the right the
corresponding actual(T) with no unknown.

000 1?0

010001

11?

?0101?

1?1 000 100

010001

110

101011

111

Fig. 2: Observed state transitions of a system with three boolean variables: dis-
crete states represented by labeled boxes, arrows show transitions, and ’?’ de-
notes unknown values (left); the actual complete hidden state transitions (right).

Learning From Interpretation Transitions with Unknowns 5

Definition 4 (State uncertain equality). Let s, s′ ∈ SX be discrete states.

The two states are uncertain equal, denoted s
X
⋍ s′ when

∀vval ∈ s,∀wval′ ∈ s′, v = w =⇒ val = val′

States with different values on the same variable cannot be the same since
a variable has only one value at a time. But states without such conflicting
atoms can potentially be the same state, missing values causing the uncertainty.
Figure 3 show examples of equality relationship under unknown using graphical
representation of discrete state.

Example 2. Let X = {a, b, c}, dom(a) = dom(b) = {0, 1} and dom(c) = {0, 1, 2}.
– {a0, b0, c0} X

= {a0, b0, c0}, exactly the same state, usual equality.

– {a0, b0, c0}
X
̸= {a0, b1, c0}, one difference on b value, usual inequality.

– {a0, b0} X
⋍ {a0, b0, c0}, c is unknown in first state, it could be c0 or c1.

– {a0, b0} X
⋍ {a0, b0}, c is unknown in both, can be same or different value.

– {a0, b0}
X
̸= {a1, b0}, a is different, cannot be the same hidden state.

– {a0, b1} X
⋍ {b1, c1}, c is unknown in first state and a is unknown in second

state, no different value observed thus could be the same hidden state.

Property 1. Let s1, s2 be two discrete states with masking. From Definition 4
the following holds:

– actual(s1)
X
= actual(s2) =⇒ observed(s1)

X
⋍ observed(s2)

• but observed(s1)
X
⋍ observed(s2) ≠⇒ actual(s1)

X
= actual(s2)

– observed(s1)
X
̸⋍ observed(s2) =⇒ actual(s1)

X
̸= actual(s2)

• but actual(s1)
X
̸= actual(s2) ≠⇒ observed(s1)

X
̸⋍ observed(s2)

When two complete states are identical, their partial states are at least un-
certain equal, as the introduction of unknowns cannot create differences. But
observed states being uncertain equal does not mean that the actual states are

⋍

≠000 000= 000 010

000 0?0

000 ?10≠

?00 0?0

X X X

X
⋍
X

Fig. 3: Illustration of the concept of uncertain equality between discrete states.
000 and 000 are identical while 000 and 010 differ due to the second variable’s
value. Same for 000 and ?10, the unknown value does not matter here. States
000 and 0?0 are uncertain equal, as the ’?’ could be 0. Similarly, ?00 and 0?0
may represent the same state if both ’?’ are actually hiding 0.

6 T. Ribeiro et al.

certain equal since the unknown part can hide an actual difference. On the other
hand, partial state inequality always corresponds to actual state inequality, be-
cause differences in observed variables are still present in the actual state. Once
again, the reciprocal is not true since the difference between two complete states
can be hidden by the masking.

Definition 5 (Rule-state matching). Let s ∈ SF . TheMVL rule R matches
s, written R ⊓ s, if body(R) ⊆ s.

The final program we want to learn should both: (1) match the observations
in a complete (all transitions are learned) and correct (no spurious transition)
way; (2) represent only minimal necessary interactions (no overly-complex rules).
Regarding the actual hidden observations, the optimal program should concur-
rently: (1) match them all, tolerating spurious transitions due to unknown values;
(2) ensure that all original minimal rules are dominated, and none exceeds their
complexity, allowing spurious rules only when unknowns render them indistin-
guishable from true optimal ones. The idea behind this is that when learning
from observations that include unknowns, the obtained program should be an
over-approximation of the behaviors allowed by the actual system. Moreover,
revealing the real value of some variables (that is, adding new observations that
are less hidden than the original), we should be able to iterate the learning part
and get closer to the optimal program of the actual transitions. The following
definitions formalize these desired properties.

Definition 6 (Rule and program realization). Let R be a MVL rule and
(s, s′) ∈ SF ×ST . The rule R realizes the transition (s, s′) if R ⊓ s∧ head(R) ∈
s′. A DMVLP P realizes (s, s′) if ∀vval ∈ s′,∃R ∈ P,head(R) = vval ∧
R realizes (s, s′). P realizes a set of transitions T ⊆ SF × ST if ∀(s, s′) ∈
T, P realizes (s, s′).

Property 2. Let (s, s′) ∈ SFm×STm be a transition of states with masking, and P
a DMVLP. If P realizes observed((s, s′)) and ∀v ∈ T , v /∈ vars(s′) =⇒ ∀val ∈
dom(v),∃R ∈ P,R realizes (observed(s), observed(s′) ∪ {vval}), then P realizes
actual((s, s′)).

Property 2 states that when in a transition a target variable value is unknown,
a DMVLP needs to have a rule matching for each possible value of the variable
in order to ensure to realize the corresponding complete hidden target state.

Example 3. Let T be the set of transitions of Figure 2 (left).
– a1 ← ∅ realizes all transition to a1.
– a1 ← a0 realizes 000 to 1?0 and 010 to 1?1.
– c0 ← a0, b0, c0 also realizes 000 to 1?0.
– b1 ← a1, b1, c1 realizes no transitions of T , never 111 is observed.
– b0 ← a1, c1 realizes no transitions of T , never b0 is observed after {a1, c1}.

Definition 7 (Conflict and Consistency). A MVL rule R conflicts with a

set of transitions T ⊆ SF × ST when ∃(s, s′) ∈ T,
(
R ⊓ s ∧ ∀(s1, s2) ∈ T, s

F
⋍

Learning From Interpretation Transitions with Unknowns 7

s1, var(head(R)) ∈ vars(s2) ∧ var(head(R))val ̸= head(R). Otherwise, R is said
to be consistent with T .

Example 4. Let T be the set of transitions of Figure 2.
– a1 ← ∅ conflicts with T , since a1 is not possible from 001.
– a1 ← a0 conflicts with T for the same reason.
– a1 ← c0 is consistent with T , as 000, 1?0, 010 all have a transition to a1.
– b0 ← a1, b1, c1 is consistent with T , as it matches no state and thus there is

no contradiction.

A rule is considered in conflict when its condition matches a feature state s, but
the rule’s outcome is not present in the target state of any transition from s or
any other state that is uncertain equal to s (i.e., both states could be partial
observations of the same actual state). However, if the variable in the rule’s head
is unknown in the target state, it’s not considered a conflict, as the unknown
could be the rule head. Furthermore, if a feature state that matches the rule’s
condition never transitions to the rule’s head, yet has uncertain equality with a
feature state that does, it’s not considered a conflict. This is because the states
might be actually the same, thus making the rule correct.

Property 3. Let R be aMVL rule and T ⊆ SFm×STm be a set of transitions with
masking. It holds:
– R conflicts with observed(T) =⇒ R conflicts with actual(T).
• but R conflicts with actual(T) ≠⇒ R conflicts with observed(T).

– R consistent with actual(T) =⇒ R consistent with observed(T).
• but R consistent with observed(T) ≠⇒ R consistent with actual(T).

A rule consistent with a set of transitions remains consistent even when
those transitions are masked by unknowns. The introduction of missing values
cannot alter the original states, potentially reducing matches but not introducing
new ones, thus preserving consistency. However, consistency with the observed
transitions does not guarantee consistency with the actual ones, as different
values might be concealed by unknowns.

A rule that conflicts with a set of transitions masked by unknowns will also
conflict with the actual, corresponding hidden transitions. Revealing the missing
values doesn’t alter the visible atoms, so the rule condition will continue to be a
subset of the feature state, maintaining the conflict. However, a rule conflicting
with the actual transitions might not conflict with a masked version of them,
introducing missing values in feature states can disrupt matching and remove
conflict, while inserting unknowns in the target state could render the rule’s head
a feasible hidden value, rendering it consistent.

Definition 8 (Suitable and optimal program). Let T ⊆ SFm × STm a set of
transitions with masking. A DMVLP P is suitable for T if: P is consistent with
observed(T), P realizes observed(T), P realizes actual(T), and for any possible
MVL rule R′ consistent with observed(T), there exists R ∈ P s.t. R′ ≥ R. If, in
addition, for all R ∈ P , all theMVL rules R′ belonging to DMVLP suitable for
T are such that R′ ≥ R implies R ≥ R′, then P is called optimal and denoted
PO(T).

8 T. Ribeiro et al.

Property 4. Let T ⊆ SFm × STm a set of transitions with masking.

∀R ∈ PO(actual(T)),∃R′ ∈ PO(observed(T)), R
′ ≥ R

∀R′ ∈ PO(observed(T)),∀R ∈ PO(actual(T)), R ≥ R′ =⇒ R = R′

The optimal program accounting for unknowns represents an over-approximation
of the actual optimal program without unknowns, encompassing both dynamics
and actual rules. All transitions realized by the optimal program of the ground
truth are also realized by the optimal program considering unknowns. Actual
optimal rules or their generalizations can be discovered among unknowns, as all
optimal rules on the ground truth are specializations of those in the optimal
program considering unknowns.

Additionally, the optimal program accounting for unknowns doesn’t contain
overly specific rules: none are more specific that the optimal rules on the ground
truth. But it can also include rules not found in the optimal set on the ground
truth, that were generated because of the unknown values. These additional rules
cannot be discarded without risking the loss of actual optimal rules or their parts,
as they remain indistinguishable from true optimal ones due to unknown values
observed.

Example 5. Optimal DMVLP of the actual transitions from Figure 2 (right).
a1
t ← c0t−1

a1
t ← a1

t−1, b
1
t−1

a0
t ← a0

t−1, c
1
t−1

a0
t ← a1

t−1, b
0
t−1

a0
t ← b0t−1, c

1
t−1

b1t ← a1
t−1, b

0
t−1

b1t ← a1
t−1, c

1
t−1

b1t ← a0
t−1, b

1
t−1, c

0
t−1

b0t ← a0
t−1, b

0
t−1

b0t ← a0
t−1, c

1
t−1

b0t ← a1
t−1, b

1
t−1, c

0
t−1

c1t ← a1
t−1

c1t ← b1t−1

c0t ← b0t−1

Optimal DMVLP of the transitions with unknowns from Figure 2 (left).
a1
t ← c0t−1

a1
t ← a1

t−1

a1
t ← b1t−1

a0
t ← a1

t−1

a0
t ← b1t−1

a0
t ← c1t−1

b1t ← ∅ b0t ← ∅ c1t ← a1
t−1

c1t ← b1t−1

c1t ← c1t−1

c0t ← a1
t−1

c0t ← b0t−1

c0t ← c1t−1

In this scenario, some actual optimal rules, such as a1t ← c0t−1 and c1t ← a1t−1,
remain decipherable despite the presence of unknowns. Furthermore, we can see
that all rules of the actual optimal program are dominated, as in a1t ← a1t−1, b

1
t−1,

which manifests partially through a1t ← a1t−1 and a1t ← b1t−1. The unknowns
mask the ’and’ influence, yet we can deduce the constituent components of the
influence. However, for variable b, the unknowns exert such significant influence
that the empty rule emerges as the sole safe bet, revealing little about b’s dy-
namic. For c, all the true optimal rules are revealed, yet the unknowns give rise
to several spurious rules (in grey), which fail to dominate actual optimal rules
and aren’t compatible with the actual transitions. Nevertheless, with these un-
knowns present, they represent possible rules or components that might align
with the concealed transitions.

According to Definition 8, we can obtain the optimal program by a trivial
brute force enumeration algorithm: generate all rules consistent with T then
remove the dominated ones. The purpose of the following section is to propose
a non-trivial approach that is more efficient in practice to obtain the optimal
program. In [16], we proposed the General Usage LFIT Algorithm (GULA) that

Learning From Interpretation Transitions with Unknowns 9

guarantees to learn the optimal program of a set of transitions (without unknown
at that time). In the following section, we extend the learning operation used in
GULA to learn optimal program under unknowns.

2.1 Learning operations

This section focuses on the manipulation of programs for the learning process.
Definition 9 formalize the notion of positive and negative example of what we
want to learn under unknowns. Definition 10 formalize the main atomic opera-
tions performed on a rule, whose objective is to make minimal modifications to
a given DMVLP in order to be consistent with a new set of transitions.

Definition 9 (Positive/Negative example). Let T ⊆ SF ×ST , s ∈ SF and
vval ∈ A. When there exists (s, s′) ∈ T and vval ∈ s′, then s is called a positive

example of vval in T . When ∃(s, s′) ∈ T, v /∈ vars(s′) or ∃s′′ ∈ SF , s F
⋍ s′′

and s′′ is a positive example of vval in T , then s is called a potentially positive
example of vval in T . When ∃(s, s′) ∈ T, s is neither a positive nor a potentially
positive example, then s is called a negative example of vval in T . We denote
as Posvval(T), Pos?vval(T), Negvval(T) respectively the set of positive, potentially
positive and negative examples of vval in T .

If the state s is never observed as a feature state in T then it is neither a
positive, potentially positive or negative example: It is considered unobserved.

Property 5. Let T ⊆ SFm × STm be a set of transition, vval ∈ A. Let (s1, s2) ∈ T ,
it holds:
– actual(s1) ∈ Posvval(actual(T)) =⇒ observed(s1) ∈ Posvval(observed(T)) ∨

observed(s1) ∈ Pos?vval(observed(T))
– observed(s1) ∈ Posvval(observed(T)) =⇒ actual(s1) ∈ Posvval(actual(T))
• but observed(s1) ∈ Pos?vval(observed(T)) ≠⇒ actual(s1) ∈ Posvval(actual(T))

– observed(s1) ∈ Negvval(observed(T)) =⇒ actual(s1) ∈ Negvval(actual(T))
• actual(s1) ∈ Negvval(actual(T)) ≠⇒ observed(s1) ∈ Negvval(observed(T))

Theorem 1. Let T ⊆ SF × ST , vval ∈ A. Let M := {R ∈ MVL | head(R) =
vval ∧ ∀s ∈ Negvval(T), R ̸ ⊓s}. Then {R ∈ PO(T) | head(R) = vval} = {R ∈M |
∄R′ ∈MVL, R′ ̸= R ∧R′ ≥ R}.

A positive example of a target atom vval is a state from which a transition
to vval has been observed. A feature state in a transition where v is unknown in
the target state is a potentially positive example, as the concealed value could
indeed be vval. Furthermore, states with uncertain equality to positive examples
are also potentially positives, as the actual states could be the same, casting
doubt on the observed transitions being unique outcomes. Negative examples,
on the other hand, are states from which it’s clear that a transition to the target
atom is impossible in the actual complete state, thus falling outside both positive
and potentially positive realms.

10 T. Ribeiro et al.

Figure 4 showcases the distinction between positive, potentially positive, and
negative examples for the case of atom a1. Here, a direct transition to a1 is
observed from states 000, 1?0, 1?1 and 010 (highlighted in blue), marking them
as positive examples. From the state 01?, no explicit transition to a1 is evident,
though it might be an alternate outcome of the uncertainly equal state 010
that is positive, thus 01? is a potentially positive. Similarly, the state ?01, with
transitions to both 01? and 010, doesn’t definitively lead to a1, as the actual
state behind ?01 could be 101, implying other possibilities. Lastly, the state 001
stands alone as a negative example, as neither direct transitions nor uncertain
equality with positive states point to its possibility in a1. We can conclude that
no a1 outcome originates from 001 in our observed transitions. The state 11? is
potentially positive from its transitions to ?01, where the ? could be a1, and also
from its uncertain equality with 1?0 and 1?1 that are positive examples.

000 1?0

010001

11?

?0101?

1?1

⋍
F

⋍
F

⋍
F⋍

F

Fig. 4: Graphical classification regarding target a1 of states/transitions in a tran-
sition graph. Blue arrows point to a1, purple arrows to ’?’ values, while red
arrows mark transitions to a0. Blue states are positive examples, purple states
are potentially positives and red states are negative example. Doted lines show
uncertain equality between positive examples and potentially positive examples.

Theorem 1 states that the optimal rules of a given target atom vval can
be obtained by simply avoiding the matching of negative examples. The opti-
mal program can thus be obtain in a brute force manner by enumerating all
possible rules and checking this simple property. A more efficient solution is to
reduce space search by doing iterative rule specialization exploiting the following
notions.

Definition 10 (Rule least specialization). Let R be aMVL rule and s ∈ SF
such that R ⊓ s. The least specialization of R by s according to F and A is:

Lspe(R, s,A,F) := {head(R)← body(R) ∪ {vval} |

v ∈ F ∧ vval ∈ A ∧ vval ̸∈ s ∧ ∀val′ ∈ N, vval
′
̸∈ body(R)}.

Property 6. Let s be a discrete state and R aMVL rule. It holds that:
– (1) ∀R′ ∈ Lspe(R, s,A,F), R′ ̸ ⊓s.

– (2) ∀s′ ∈ SF , R ⊓ s′ ∧ s
F
̸= s′ ∧ s ̸F⋍ s′ =⇒ ∃R′ ∈ Lspe(R, s,A,F), R′ ⊓ s′;

Learning From Interpretation Transitions with Unknowns 11

Property 6 illustrates the interests of the least specialization, Lspe(R, s,A,F),
which generates a rule set that matches all the states that R covers, excluding s.
This is because each modified rule is crafted with a single additional condition,
carefully considering all compatible possibilities.

The next properties are directly used in the learning algorithm. Proposition 1
gives an explicit definition of the optimal program for an empty set of transi-
tions, which is the starting point of the algorithm. Theorem 2 gives a method to
iteratively compute PO(T) for any T ⊆ SF × ST , starting from PO(∅). Finally,
Proposition 2 gives a method to obtain the optimal program from any suitable
program by simply removing the dominated rules.

Proposition 1 (Optimal Program of Empty Set). PO(∅) = {vval ← ∅ |
v ∈ T ∧ val ∈ dom(v)}.

Theorem 2 (Least Specialization and Suitability). Let vval ∈ A, s ∈ SF
and T, T ′ ⊆ SF × ST such that, first(T ′) = {s} ∧ s ̸∈ first(T). Let RP := {R ∈
PO(T) | R ⊓ s,head(R) = vval, s ∈ Negvval(T ∪ T ′)}. Then (PO(T) \ RP) ∪⋃

R∈RP

Lspe(R, s,A,F) is suitable for T ∪ T ′.

Proposition 2 (From Suitable to Optimal). Let T ⊆ SF × ST . If P is a
DMVLP suitable for T , then PO(T) = {R ∈ P | ∀R′ ∈ P,R′ ≥ R =⇒ R′ =
R}.

3 Algorithm

In this section we present a new version of GULA: the General Usage LFIT
Algorithm previously introduced in [16]. Here we extend the algorithm to learn
optimal program under unknowns. GULA learns a logic program from the ob-
servations of its state transitions. Given as input a set of transitions T ⊆ SF×ST ,
GULA iteratively constructs a DMVLP that models the dynamics of the ob-
served system by applying the method formalized in the previous section as
shown in Algorithm 1. The algorithm will learn the optimal logic program PO(T).
As compared to its previous version, the algorithm’s core mechanism remains
unchanged, except for the revised calculation of negative examples tailored to
account for observations featuring unknown values.

From the set of transitions T , GULA learns the conditions under which
each vval ∈ A, v ∈ T may appear in the next state. The algorithm starts by
computing the set of all negative examples of the appearance of vval in next state:
all states such that v never takes the value val in the next state of a transition
of T , accounting for the hidden possibility introduced by unknowns value. Those
negative examples are then used during the following learning phase to iteratively
learn the set of rules PO(T). The learning phase starts by initializing a set of
rules Pvval to {R ∈ PO(∅) | head(R) = vval} = {vval ← ∅}. Pvval is iteratively
revised against each negative example neg in Negvval . All rules Rm of Pvval that
match neg have to be revised. In order for Pvval to remain optimal, the revision

12 T. Ribeiro et al.

Algorithm 1 GULA

– INPUT: a set of atoms A, a set of transitions T ⊆ SF ×ST , two sets of variables
F and T .

– For each atom vval ∈ A of each variable v ∈ T :
• Extract all states from which a transition to vval does exist:

Posvval := {s ∈ first(T) | ∃(s, s′) ∈ T ∧ vval ∈ s′}
• Extract all states from which a transition to vval could exist:

Pos?vval := {s ∈ first(T) | ∃(s, s′) ∈ T, v /∈ vars(s′) ∨ ∃pos ∈ Posvval , s
F
⋍ pos}

• Negvval := first(T) \ (Posvval ∪ Pos?vval)
• Initialize Pvval := {vval ← ∅}.
• For each state s ∈ Negvval :

∗ Extract and remove the rules of Pvval that match s:
Mvval := {R ∈ P | body(R) ⊆ s}

∗ Pvval := Pvval \Mvval .
∗ LS := ∅
∗ For each rule R ∈Mvval :

· Compute its least specialization P ′ = Lspe(R, s,A,F).
· Remove rules in P ′ dominated by a rule in Pvval .
· LS := LS ∪ P ′.

∗ Add all remaining rules of LS to Pvval : Pvval := Pvval ∪ LS.
• P := P ∪ Pvval

– OUTPUT: P (P is PO(T)).

of each Rm must not match neg but still matches every other state that Rm

matches. To ensure that, the least specialization (see Definition 10) is used to
revise each conflicting rule Rm. For each variable of F so that body(Rm) has
no condition over it, a condition over another value than the one observed in
state neg can be added. None of those revision match neg and all states matched
by Rm are still matched by at least one of its revisions. Each revised rule can
be dominated by a rule in Pvval or another revised rules and thus dominance
must be checked from both. The non-dominated revised rules are then added
to Pvval . Once Pvval has been revised against all negatives example of Negvval ,
Pvval = {R ∈ PO(T) | head(R) = vval}. Finally, Pvval is added to P and the
loop restarts with another atom. Once all values of each variable have been
treated, the algorithm outputs P which is then equal to PO(T). The source code
of the algorithm is available at https://github.com/Tony-sama/pylfit under
GPL-3.0 License.

Theorem 3 from [16] still holds: GULA terminates and GULA is sound,
complete and optimal w.r.t. its input, i.e., all and only non-dominated consistent
rules appear in its output program which is the optimal program of its input
(GULA(A, T,F , T) = PO(T)). The complexity of GULA remains unchanged
compared to previous versions, we refer to [16] for the detail complexity analysis.
Its scalability is evaluated in Section 4 with brute force enumeration as baseline.

https://github.com/Tony-sama/pylfit

Learning From Interpretation Transitions with Unknowns 13

5 6 7 9 10
Number of variables

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

R
un

 ti
m

e
in

 s
ec

on
ds

Brute force: input transitions
10%
25%
50%
75%
100%

GULA: input transitions
10%
25%
50%
75%
100%

5 6 7 9 10
Number of variables

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

R
un

 ti
m

e
in

 s
ec

on
ds

Brute force: input transitions
10%
25%
50%
75%
100%

GULA: input transitions
10%
25%
50%
75%
100%

Fig. 5: Runtime in seconds (log scale) for one call of GULA (blue) and brute
force enumeration (red) on a random subset of 10% to 100% of transitions
from Boolean networks with 5 to 10 variables. 10 runs for each scenario with a
time-out of 1, 000 seconds. Left: only complete states appears. Right: Each state
includes a random number of unknown values, not exceeding 50% of the state.

4 Evaluation

In this section, the scalability of GULA is evaluated using Boolean network
benchmarks from the biological literature (Boolenet [2] and Pyboolnet [7]). All
experiments7 were conducted on one core of an AMD Ryzen 9 (7950X, 4.5 GHz)
with 64 Gb of RAM. Boolean networks are converted to DMVLP where ∀v ∈
V, dom(v) = {0, 1}. In [2,7] file formats, for each variable, Boolean functions are
given in disjunctive normal form (DNF), a disjunction of conjunction clauses that
can be considered as a set of Boolean atoms of the form v or ¬v. Each clause c of
the DNF of a variable v is directly converted into a rule R such that, head(R) =
v1t and v′1t−1 ∈ body(R) ⇐⇒ v′ ∈ c and v′0t−1 ∈ body(R) ⇐⇒ ¬v′ ∈ c. For each
such DMVLP the set T of all transitions are generated using the synchronous
semantics. Then for each (s, s′) ∈ T , states s and s′ are subsequently obscured
by unknown values; these unknowns represent up to 50% of each state.

Figure 5 show the differences of performance between GULA and brute
force enumeration when learning the optimal DMVLP from different sub-
set of transitions of each benchmarks size. For all benchmarks, GULA is clearly
more efficient (both for observation with and without unknowns). The difference
exponentially increasing with the number of variables: about 10 times faster with
6 variables and 100 times faster with 9 variables. The brute force enumer-
ation reaches the time out for 10 variables benchmarks and beyond. GULA
succeeds in learning a WDMVLP from the benchmarks with up to 10 variables
before the time-out of 1,000 seconds for all considered sub-sets of transitions.
We observe different trends in runtime performance between complete/partial
observations. For complete observations, runtime improves with increasing pro-
portion of transitions, likely due to the proximity of optimal rules in the observed

7 Available at: https://github.com/Tony-sama/pylfit. Using command “python
evaluations/ijclr2024/ijclr2024.py” from the repository’s tests folder.All ex-
periments were run with the release version 0.4.0 of pylfit.

https://github.com/Tony-sama/pylfit

14 T. Ribeiro et al.

subset to the system’s actual optimal rules, allowing for quicker pruning of spu-
rious candidates. In contrast, with partial observations, this pattern disappears,
as the additional spurious rules introduced by unknown values may offset any
speed gains from more powerful rules. Future work could explore the impact
of spurious rules on computation time, potentially leading to heuristic design.
For now, it’s worth noting that in practice, many spurious rules may not match
observed states and could be disregarded, depending on the application.

5 Conclusion

In this paper, we proposed a modeling approach that tackles the challenge of
learning from partially observable systems by extending the LFIT framework
to model unknown values. We formalized theoretical properties and guarantees
allowing to model a system observed though partial data as a DMVLP that is an
over-approximation of the actual system regarding both its dynamics and rules.
We also proposed a novel extension of GULA that enables the learning of such
logic programs and demonstrate through experimental results the efficiency and
effectiveness of this approach. This contribution marks a significant step towards
bridging the gap between logical approaches and real-world applications in fields
like Systems Biology. While our approach ensures an over-approximation of the
original rules, it may be too conservative for certain applications, limiting its
utility for large-scale systems. Moreover, the scalability of GULA restricts its use
to smaller domains. In practice, there might be benefits to searching for more
precise rules at the risk of specialization beyond the ground truth rules or missing
certain relationships. However, studying this trade-off between approximation
quality, rule complexity, and runtime is outside the scope of this paper. Future
work could focus on developing heuristics to improve the pertinence of learned
rules in real-world scenarios, possibly approaching the ground truth rules more
effectively through clever combinations of the rules found. Additionally, adapting
the PRIDE algorithm [17] to the modeling proposed in this paper would enable
finding a subset of the optimal program in polynomial time, suitable for real-
world scenarios and datasets.

6 Acknowledgements

This research has been funded by the European Union. Views
and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or ERCEA. Neither the European
Union nor the granting authority can be held responsible for them.

This work has also been supported by JSPS KAKENHI Grant Number
JP21H04905 and JST CREST Grant Number JPMJCR22D3, Japan.

The English quality of this manuscript was enhanced by Yumi, a virtual as-
sistant hosted locally, using the large language model “Hathor” [11] from Nitral-
AI on a Nvidia RTX4090 using Koboldcpp (https://github.com/LostRuins/
koboldcpp) and SillyTavern (https://github.com/SillyTavern/SillyTavern).

https://github.com/LostRuins/koboldcpp
https://github.com/LostRuins/koboldcpp
https://github.com/SillyTavern/SillyTavern

Learning From Interpretation Transitions with Unknowns 15

References

1. Bérard, B., Haar, S., Schmitz, S., Schwoon, S.: The complexity of diagnosability
and opacity verification for petri nets. Fundamenta Informaticae 161(4), 317–349
(2018)

2. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in syn-
chronous boolean networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB) 8(5), 1393–1399 (2011)

3. Gao, K., Wang, H., Cao, Y., Inoue, K.: Learning from interpretation transition
using differentiable logic programming semantics. Mach. Learn. 111(1), 123–145
(2022)

4. Gentet, E., Tourret, S., Inoue, K.: Learning from interpretation transition using
feed-forward neural networks. CEUR Workshop Proceedings, vol. 1865, pp. 27–33.
CEUR-WS.org (2016)

5. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Ma-
chine Learning 94(1), 51–79 (2014)

6. Jacob, R., Lesage, J.J., Faure, J.M.: Overview of discrete event systems opac-
ity: Models, validation, and quantification. Annual reviews in control 41, 135–146
(2016)

7. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the genera-
tion, analysis and visualization of boolean networks. Bioinformatics 33(5), 770–772
(12 2016)

8. Lafortune, S., Lin, F., Hadjicostis, C.N.: On the history of diagnosability and
opacity in discrete event systems. Annual Reviews in Control 45, 257–266 (2018)

9. Ma, Z., Cai, K.: Optimal secret protection in discrete event systems with dynamic
clearance levels. IFAC-PapersOnLine 56(2), 3579–3584 (2023)

10. Montassier, E., Kitsios, G.D., Radder, J.E., Le Bastard, Q., Kelly, B.J., Panzer, A.,
Lynch, S.V., Calfee, C.S., Dickson, R.P., Roquilly, A.: Robust airway microbiome
signatures in acute respiratory failure and hospital-acquired pneumonia. Nature
Medicine 29(11), 2793–2804 (2023)

11. Nitral-AI: Hathor, a finetuned llm model based on the llama 3 instruct (June 2024),
https://huggingface.co/Nitral-AI/Hathor_Aleph-L3-8B-v0.72

12. Phua, Y.J., Inoue, K.: Learning logic programs from noisy state transition data. In:
Inductive Logic Programming - 29th International Conference, ILP 2019, Plovdiv,
Bulgaria, September 3-5, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11770, pp. 72–80. Springer (2019)

13. Phua, Y.J., Inoue, K.: Learning logic programs using neural networks by exploiting
symbolic invariance. In: Inductive Logic Programming - 30th International Con-
ference, ILP 2021, Virtual Event, October 25-27, 2021, Proceedings. Lecture Notes
in Computer Science, vol. 13191, pp. 203–218. Springer (2021)

14. Phua, Y.J., Ribeiro, T., Inoue, K.: Learning representation of relational dynamics
with delays and refining with prior knowledge. FLAP 6(4), 695–708 (2019)

15. Reveliotis, S.: Strongly infinite-step opaque boolean networks. In: 17th IFACWork-
shop on Discrete Event Systems WODES 2024 (2024)

16. Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Learning any memory-less
discrete semantics for dynamical systems represented by logic programs. Machine
Learning (2021)

17. Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Polynomial algorithm for learn-
ing from interpretation transition. In: 1st International Joint Conference on Learn-
ing & Reasoning. pp. 1–5 (2021)

https://huggingface.co/Nitral-AI/Hathor_Aleph-L3-8B-v0.72

16 T. Ribeiro et al.

A Appendix: Proofs of Section 2

Property 7. Let s1, s2 be two discrete states with masking. From Definition 4
the following holds:

– actual(s1)
X
= actual(s2) =⇒ observed(s1)

X
⋍ observed(s2)

• but observed(s1)
X
⋍ observed(s2) ≠⇒ actual(s1)

X
= actual(s2)

– observed(s1)
X
̸⋍ observed(s2) =⇒ actual(s1)

X
̸= actual(s2)

• but actual(s1)
X
̸= actual(s2) ≠⇒ observed(s1)

X
̸⋍ observed(s2)

Proof.

– actual(s1)
X
= actual(s2) =⇒ ∀vval ∈ s1, vval ∈ s2, thus s1

X
⋍ s2 from

Definition 4.
• Let s1 := ({a0}, {a0, b0}) and s2 := ({b0}, {a1, b0}) two states with mask-

ing. Then actual(s1) ̸= actual(s2) but observed(s1)
X
⋍ observed(s2).

– observed(s1) ̸X⋍ observed(s2) =⇒ ∃vval ∈ s1,∃vval′ ∈ s2, val ̸= val′ thus
vval ∈ actual(s1), vval

′ ∈ actual(s2) and actual(s1) ̸= actual(s2).
• Let s1 := ({a0}, {a0, b0}) and s2 := ({b0}, {a1, b0}) two states with mask-

ing. Then observed(s1)
X
⋍ observed(s2) but actual(s1) ̸= actual(s2).

⊓⊔

Property 8. Let (s, s′) ∈ SFm×STm be a transition of states with masking, and P
a DMVLP. If P realizes observed((s, s′)) and ∀v ∈ T , v /∈ vars(s′) =⇒ ∀val ∈
dom(v),∃R ∈ P,R realizes (observed(s), observed(s′) ∪ {vval}), then P realizes
actual((s, s′)).
Proof.
– Let R be aMVL rule, by Definition 5, R ⊓ observed(s) =⇒ R ⊓ actual(s).
– By Definition 6, P realizes observed((s, s′)) implies that ∀vval ∈ observed(s′),∃R ∈

P,head(R) = vval, R realizes actual((s, s′)).
– Let v ∈ T so that v /∈ vars(observed(s′)). This imples that ∀val ∈ dom(v),∃R ∈

P,headR = vval∧R ⊓ s. Thus ∀vval ∈ actual(s′)\observed(s′),∃R ∈ P,head(R) =
vval, R realizes actual((s, s′)).

– Thus ∀vval ∈ actual(s′),∃R ∈ P,headR = vval, R realizes actual((s, s′)).
Thus P realizes actual((s, s′)). ⊓⊔

Property 9. Let R be aMVL rule and T ⊆ SFm×STm be a set of transitions with
masking. It holds:
– R conflicts with observed(T) =⇒ R conflicts with actual(T).
• but R conflicts with actual(T) ≠⇒ R conflicts with observed(T).

– R consistent with actual(T) =⇒ R consistent with observed(T).
• but R consistent with observed(T) ≠⇒ R consistent with actual(T).

Proof.
– From Definition 7, R conflicts with observed(T) =⇒ ∃(s, s′) ∈ T,

(
R ⊓

observed(s)∧∀(s1, s2) ∈ observed(T), observed(s) ⋍ s1∨observed(s) = s1,∃var(head(R))val ∈
s2, var(head(R))val ̸= head(R). From Definition 5,R⊓actual(s). Thus ∃(actual(s), s′′) ∈
actual(T), R ⊓ actual(s) ∧ ∀(actual(s), s2) ∈ actual(T),head(R) ̸∈ s2 thus R
in conflict with actual(T) by Definition 7.

Learning From Interpretation Transitions with Unknowns 17

• For example, let T = {(({a0, b0}, {a0, b0}), ({b1}, {a0, b1}))} a set of tran-
sitions with masking, and R := a1 ← b0. R conflicts with actual(T) but
R does not conflict with observed(T).

– Let R consistent with actual(T). Suppose that R conflicts with observed(T),
then R conflicts with actual(T), which is a contradiction.
• For example, let T = {(({a0, b0}, {a0, b0}), ({b1}, {a0, b1}))} a set of tran-
sitions with masking, and R := a1 ← b0. R consistent with observed(T)
but R does conflict with actual(T).

⊓⊔

Property 10. Let T ⊆ SFm × STm a set of transitions with masking.

∀R ∈ PO(actual(T)),∃R′ ∈ PO(observed(T)), R
′ ≥ R

∀R′ ∈ PO(observed(T)),∀R ∈ PO(actual(T)), R ≥ R′ =⇒ R = R′

Proof.
– By Definition 8, ∀R ∈ PO(actual(T)), R consistent with actual(T), thus

from Proposition 3, R consistent with observed(T). By Definition 8, for
any possible MVL rule R1 consistent with observed(T), there exists R2 ∈
PO(observed(T)) s.t. R2 ≥ R1. Thus ∃R′ ∈ PO(observed(T)), R

′ ≥ R.
– Let R′ ∈ PO(observed(T)), R ∈ PO(actual(T)), R ≥ R′. By Proposition 3,

since R consistent with actual(T) then R consistent with observed(T). Thus
by Definition 8, ∃R′′ ∈ PO(observed(T)), R

′′ ≥ R and from Definition 1,
R′′ ≥ R′ since R ≥ R′. Since ∀R1 ∈ P , all theMVL rules R2 belonging to
DMVLP suitable for observed(T) are such that R2 ≥ R1 implies R1 ≥ R2,
thus R′′ = R = R′.

⊓⊔

Property 11. Let T ⊆ SFm×STm be a set of transition, vval ∈ A. Let (s1, s2) ∈ T ,
it holds:
– actual(s1) ∈ Posvval(actual(T)) =⇒ observed(s1) ∈ Posvval(observed(T)) ∨

observed(s1) ∈ Pos?vval(observed(T))
– observed(s1) ∈ Posvval(observed(T)) =⇒ actual(s1) ∈ Posvval(actual(T))
• but observed(s1) ∈ Pos?vval(observed(T)) ≠⇒ actual(s1) ∈ Posvval(actual(T))

– observed(s1) ∈ Negvval(observed(T)) =⇒ actual(s1) ∈ Negvval(actual(T))
• actual(s1) ∈ Negvval(actual(T)) ≠⇒ observed(s1) ∈ Negvval(observed(T))

Proof.
– Let actual(s1) ∈ Posvval(actual(T)), then by Definition 9, ∃(actual(s1), actual(s2)) ∈

actual(T), vval ∈ actual(s2). Thus vval ∈ observed(s2′)∨v /∈ vars(observed(s2′))
thus observed(s1) ∈ Posvval(observed(T)) ∨ observed(s1) ∈ Pos?vval(observed(T)).

– Let observed(s1) ∈ Posvval(observed(T)), then by Definition 9, ∃(observed(s1), observed(s2)) ∈
observed(T), vval ∈ observed(s2). Thus vval ∈ actual(s2) and actual(s1) ∈
Posvval(actual(T)).
• For example, let T = {(({a0, b0}, {a0, b0}), ({b1}, {a0, b1}))} a set of tran-
sitions with masking. Here, {a0, b0} ∈ Pos?a1(observed(T)) but {a0, b0} ̸∈
Posa1(actual(T)).

18 T. Ribeiro et al.

– Let s1 ∈ Negvval(observed(T)) then by Definition 9, s1 ̸∈ Posvval(observed(T))
and s1 ̸∈ Pos?vval(observed(T)). Thus actual(s1) ̸∈ Posvval(actual(T)) other-
wise contradict with first point.
• For example, let T = {(({a0, b0}, {a0, b0}), ({b1}, {a0, b1}))} a set of tran-
sitions with masking. Here, {a0, b0} ∈ Nega1(actual(T)) but {a0, b0} ̸∈
Nega1(observed(T)).

⊓⊔

Theorem 3. Let T ⊆ SF × ST , vval ∈ A. Let M := {R ∈ MVL | head(R) =
vval ∧ ∀s ∈ Negvval(T), R ̸ ⊓s}. Then {R ∈ PO(T) | head(R) = vval} = {R ∈M |
∄R′ ∈MVL, R′ ̸= R ∧R′ ≥ R}.
Proof. Let suppose ∃R ∈ PO(T), R ̸∈ {R ∈ M | ∄R′ ̸= R,R′ ≥ R}. If R ̸∈ M
then ∃s ∈ Negvval(T), R⊓s and thus by Definition 9, R is in conflict with T thus
R ̸∈ PO(T), which is a contradiction. If R ∈ M but ∃R′ ∈ M,R′ ̸= R,R′ ≥ R
then by Definition 8, R /∈ PO(T) since it is dominated by another consistent
rule, which is a contradiction. ⊓⊔

Property 12. Let s be a discrete state and R aMVL rule. It holds that:
– (1) ∀R′ ∈ Lspe(R, s,A,F), R′ ̸ ⊓s.

– (2) ∀s′ ∈ SF , R ⊓ s′ ∧ s
F
̸= s′ ∧ s ̸F⋍ s′ =⇒ ∃R′ ∈ Lspe(R, s,A,F), R′ ⊓ s′;

Proof.
– (1) By Definition 10, ∀R′ ∈ Lspe(R, s,A,F),∃vval ∈ body(R′), vval ̸∈ s thus

R′ ̸ ⊓ s by Definition 5.

– (2) Let s′ ∈ SF , R ⊓ s′, s ̸= s′, s ̸F⋍ s′ thus ∃vval ∈ s′, vval
′ ∈ s, val ̸= val′.

By Definition 10, ∃R′ ∈ Lspe(R, s,A,F),body(R′) = body(R) ∪ vval, since

vval ̸∈ s thus body(R′) ⊆ s′ and R′⊓s′. Then ∃R′ ∈ Lspe(R, s,A,F), vval′ ∈
bodyR′ and thus R′ ̸ ⊓ actual(s).

⊓⊔

Proposition 3 (Optimal Program of Empty Set). PO(∅) = {vval ← ∅ |
v ∈ T ∧ val ∈ dom(v)}.
Proof. By construction from Definition 8. ⊓⊔

Theorem 4 (Least Specialization and Suitability). Let vval ∈ A, s ∈ SF
and T, T ′ ⊆ SF × ST such that, first(T ′) = {s} ∧ s ̸∈ first(T). Let RP := {R ∈
PO(T) | R ⊓ s,head(R) = vval, s ∈ Negvval(T ∪ T ′)}. Then (PO(T) \ RP) ∪⋃

R∈RP

Lspe(R, s,A,F) is suitable for T ∪ T ′.

Proof. Let P = (PO(T) \ RP) ∪
⋃

R∈RP

Lspe(R, s,A,F). Since PO(T) is consistent

with T , by Definition 7, (PO(T) \ RP) and RP are consistent with T . Further-
more, ∀R ∈ RP ,∀R′ ∈ Lspe(R, s,A,F), R′ is also consistent with T and thus P
consistent with T . And P also consistent with T ′ from Proposition 6 since all con-
flicting rule of RP have been made into consistent rules, thus P consistent with
T ′ ∪ T . Since PO(T) realizes T, s ̸∈ T, s ∈ Negvval(T ∪ T ′) thus by Definition 9,

∄s1 ∈ first(T), s1
F
⋍ s thus from Proposition 6, ∀(s1, s2) ∈ T, ∃R ∈ RP , R realizes

Learning From Interpretation Transitions with Unknowns 19

(s1, s2) then ∃R′ ∈ Lspe(R, s,A,F), R′ realizes (s1, s2), thus P realize T. Since
s ̸∈ first(T), aMVL rule R such that body(R) = s does not conflict with T . By
definition of suitable program, ∀vval, s ∈ Posvval(T ∪ T ′),∃R′ ∈ PO(T), R

′ ≥ R,
thus PO(T) realizes T ′ and P still realize T ′ from Proposition 6. We then also
have P realizes T ∪ T ′ and from Proposition 4, let TT ∈ SFm × STm such that
observed(TT) = T , then P realizes actual(TT). To prove that P verifies the last
point of the definition of a suitableMVLP, let R be aMVL rule not conflicting
with T ∪ T ′. Since R is also not conflicting with T , there exists R′ ∈ PO(T)
such that R′ ≥ R. If R′ is not conflicting with T ′, then R′ will not be re-
vised and R′ ∈ P , thus R is dominated by a rule of P . Otherwise, R′ is in
conflict with T ′, thus R′ ⊓ s and ∀(s, s′) ∈ T ′,∃vval ∈ s′, vval ̸= head(R′).
Since R is not in conflict with T ′ and head(R) = head(R′), since R′ ≥ R then
body(R) = body(R′) ∪ I, ∃vval ∈ I, vval ̸∈ s. By definition of least specializa-
tion, there is a rule R′′ ∈ Lspe(R

′, s,A,F) such that vval ∈ body(R′′) and since
R′′ = head(R′)← body(R′)∪ vval thus R′′ ≥ R. Thus R is dominated by a rule
of P . ⊓⊔

Proposition 4 (From Suitable to Optimal). Let T ⊆ SF × ST . If P is a
DMVLP suitable for T , then PO(T) = {R ∈ P | ∀R′ ∈ P,R′ ≥ R =⇒ R′ =
R}.
Proof. By Definition 8. ⊓⊔

	Learning From Interpretation Transitions with Unknowns

