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Abstract. Counterfactual explanations are instrumental in helping hu-
mans gain insight into the decision-making processes of artificial in-
telligence systems by illustrating the effects of altering specific input
variables. By presenting hypothetical scenarios, they foster transparency
in artificial intelligence, enabling us to comprehend its operations more
deeply and cultivate confidence in its dependability. This transparency is
essential for the development of ethical artificial intelligence systems that
are both equitable and accountable. In this paper, we expand upon the
Learning From Interpretation Transition framework by proposing a theo-
retical modeling of counterfactual explanations for dynamic multi-valued
logic programs. Furthermore, we introduce an efficient algorithm called
CELOS that leverages properties over logic rules to compute all min-
imal counterfactual explanations. We show through theoretical results
the correctness of our approaches. Practical evaluation is performed on
benchmarks from biological literature and synthetic instances.

Keywords: Explainable artificial intelligence · inductive logic program-
ming · logical modeling · dynamic systems · counterfactual explanations.

1 Introduction

Counterfactual explanations [26] provide valuable insights into how artificial in-
telligence (AI) systems arrive at their decisions, illustrating the impact of chang-
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ing specific input variables. As demonstrated in the intuitive example by [14],
consider an applicant who was rejected for a loan by a financial institution’s
algorithm. While the institution might simply state, ”Your credit score was
insufficient,” such a response offers little practical guidance for improvement.
However, counterfactual explanations can provide concrete, actionable feedback.
For instance, they could reveal that a higher income or a lower debt-to-income
ratio might have led to a different outcome. These hypothetical scenarios em-
power individuals with the knowledge needed to adjust their circumstances and
potentially achieve a more favorable result in the future.

This concept holds significant relevance in numerous real-world applications
where decisions have a profound impact on individuals’ lives. Consider univer-
sity admissions [21], hiring processes [27], government aid distribution [1], and
identifying high-risk patients for diseases [2]. In each of these scenarios, merely
knowing why something went wrong is insufficient. As highlighted by [12], peo-
ple seek contrastive explanations – they want to know why event P occurred
instead of event Q. What they truly need is insight into what actions they could
take differently to achieve a better outcome, assuming the algorithm remains
unchanged. Counterfactual explanations excel in providing this kind of insight
by demonstrating how minor adjustments in a person’s attributes could lead to
different results. For instance, they might reveal that a higher income or a lower
debt-to-income ratio might have led to a different loan outcome. These expla-
nations are akin to a roadmap, offering a clear understanding of the algorithm’s
focus. Unlike other methods that attempt to approximate the algorithm’s behav-
ior, counterfactual explanations are inherently accurate as they derive directly
from the model’s output.

Counterfactual reasoning, when applied to dynamic systems, has some links
with model verification and control theory. In counterfactual approaches, one
aims to identify minimal changes needed to the input of a model to reach a
different outcome. In classical model-checking approaches, one considers all the
possible outcomes of the model before stating whether yes or no a given property
can be verified. Finally, when such a desired property is not verified, control the-
ory can be from help to design some modifications to the global model that would
guarantee the truthfulness of the property. One limit to model verification is the
reliability one can have onto the model, with regard to the real system. Distance
between the model and the real system has a major impact on the quality of the
knowledge one can derive from the verification process. Some approaches, typ-
ically statistical model-checking, have thus emerged to insert some uncertainty
into the model. Counterfactual approaches focus on the step before confirming
the model properties. It is somehow a way of proposing minimum levers of action
to ensure the accessibility of certain states. Some state-of-the-art works relate
to such challenges, in the context of different properties. For example, in [23],
the authors propose a software tool designed to control asynchronous Boolean
networks in some specific configurations. The approach consists in identifying
key nodes whose perturbations can drive the network from a source attractor
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(representing an initial cell state) to a target attractor (representing a desired
cell state).

In this paper, we address the challenge of generating and modeling all min-
imal counterfactual explanations from models learned by the Learning From
Interpretation Transition (LFIT) framework [7,18]. This framework represents
an inductive logic programming paradigm that automatically builds a model of
system dynamics from observed state transitions. In this paper, we propose a
novel theoretical modeling and an efficient algorithm to produce counterfactual
explanations from dynamic multi-valued logic programs produced by LFIT.

This paper is organized as follows. Section 2 provides a formalization of dis-
crete memory-less dynamics systems as multi-valued logic programs. Section 3
models counterfactual explanations for multi-valued logic programs and intro-
duces a simple näıve enumeration algorithm to find them. Section 4 formalizes
properties and presents an efficient algorithm calledCELOS that leverages those
properties to compute counterfactual explanations more efficiently, directly uti-
lizing the logic rules. Section 5 offers experimental evaluations to assess the
scalability of the method on Boolean networks benchmarks from the literature
and randomly generated programs. Section 7 concludes the paper. All proofs of
theorems and propositions are provided in the appendix.

2 Dynamical Multi-Valued Logic Program

This section presents the fundamental concepts required to understand our mod-
eling approach. The definitions provided here are largely adapted from [18], with
minor modifications to align with our specific context and notation.

Let V = {v1, · · · , vn} be a finite set of n ∈ N variables, Val the set in which
variables take their values and dom : V → {d ∈ ℘(Val) | |d| ≥ 2} a function
associating a domain (with at least two values) to each variable, with ℘ the
power set. The atoms of multi-valued logic (MVL) are of the form vval where
v ∈ V and val ∈ dom(v). The set of such atoms is denoted by A = {vval ∈
V × Val | val ∈ dom(v)}. Let F and T be a partition of V, that is: V = F ∪ T
and F ∩ T = ∅. F is called the set of feature variables, which values represent
the state of the system at the previous time step (t− 1), and T is called the set
of target variables, which values represent the state of the system at the current
time step (t). A MVL rule R is defined by:

R = vval00 ← vval11 ∧ · · · ∧ vvalmm

where m ∈ N, and ∀i ∈ J0;mK, vvalii ∈ A; furthermore, every variable is men-
tioned at most once in the right-hand part: ∀j, k ∈ J1;mK, j ̸= k ⇒ vj ̸= vk.
The rule R has the following meaning: the variable v0 can take the value val0 in
the next dynamical step if for each i ∈ J1;mK, variable vi has value vali in the
current dynamical step. The atom on the left side of the arrow is called the head

of R, denoted head(R) := vval00 , and is made of a target variable: v0 ∈ T . The
notation var(head(R)) := v0 denotes the variable that occurs in head(R). The
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conjunction on the right-hand side of the arrow is called the body of R, written
body(R), and all variables in the body are feature variables: ∀i ∈ J1;mK, vi ∈ F .
In the following, the body of a rule is assimilated to the set {vval11 , · · · , vvalmm };
we thus use set operations such as ∈ and ∩ on it, and we denote ∅ an empty
body. A dynamical multi-valued logic program (DMVLP) is a set of MVL rules.

Definition 1 (Rule Domination). Let R1, R2 be MVL rules. R1 dominates
R2, written R1 ≥ R2 if head(R1) = head(R2) and body(R1) ⊆ body(R2).

The dynamical system we want to learn the rules of, is represented by a suc-
cession of states as formally given by Definition 2. We also define the “compati-
bility” of a rule with a state in Definition 3, and with a transition in Definition 4.

Definition 2 (Discrete state and transition). A discrete state s on a set of
variables X ∈ {F , T } of a DMVLP is a function from X to (dom(v))v∈X . It can
be equivalently represented by the set of atoms {vs(v) | v ∈ X} and thus we can
use classical set operations on it. We write SX to denote the set of all discrete
states of X . A state s ∈ SF is called a feature state and a state s′ ∈ ST is called
a target state. A couple of states (s, s′) ∈ SF × ST is called a transition.

Definition 3 (Rule-state matching). Let s ∈ SF . The MVL rule R matches
s, written R ⊓ s, if body(R) ⊆ s.

The objective of LFIT is to learn a program that should both: (1) match the
observations in a complete (all transitions are learned) and correct (no spurious
transition) way; (2) represent only minimal necessary interactions (no overly-
complex rules). The following definitions formalize these desired properties.

Definition 4 (Rule and program realization). Let R be a MVL rule and
(s, s′) ∈ SF × ST . The rule R realizes the transition (s, s′) if R matches s and
head(R) ∈ s′. A DMVLP P realizes (s, s′) if for any vval of s′, there exists
R ∈ P with head(R) = vval and R realizes (s, s′). P realizes a set of transitions
T ⊆ SF × ST if for any (s, s′) of T, P realizes (s, s′).

Definition 5 (Conflict and Consistency). A MVL rule R conflicts with a
set of transitions T ⊆ SF ×ST when there is a transition (s, s′) of T such that,
R matches s and for any transition (s, s′′) of T , head(R) /∈ s′′. Otherwise, R is
said to be consistent with T . A DMVLP P is consistent with a set of transitions
T if P does not contain any rule R conflicting with T .

Definition 6 (Suitable and optimal program). Let T ⊆ SFm × STm a set of
transitions. A DMVLP P is suitable for T if: P is consistent with T , P realizes
T , and for any possible MVL rule R′ consistent with T , there exists R ∈ P
such that R′ dominates R. If, in addition, for all R ∈ P , all the MVL rules
R′ belonging to DMVLP suitable for T are such that R′ dominates R implies
RdominatesR′, then P is called optimal and denoted PO(T ).

In [18, Theorem 5], we proposed the General Usage LFIT Algorithm (GULA)
that guarantees to learn the optimal program of a set of transitions: let T ⊆
SF × ST , GULA(A, T,F , T ) = PO(T ).
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Observations DMVLPLFIT ExplanationsCounterfactual
Reasoning

Our Focus

INPUT OUTPUT

Fig. 1: This paper focuses on modeling/computing counterfactual explanations
over DMVLP. This process thus happens on the output of the LFIT approach.

3 Counterfactual Reasoning with DMVLP

The present work builds on the definitions introduced earlier. As shown in Figure
1, this paper focuses on modeling and generating counterfactual explanations for
a DMVLP. Since the method is independent of how the DMVLP is learned, we
refer interested readers to [18] for details on learning such models using LFIT.

Definition 7 (Counterfactual Explanation Problem). Let P be a DMVLP,
s ∈ SF be a feature state, v ∈ T be a target variable. A counterfactual explanation
problem is a tuple CP := (P, s, v,Valout,Val in) where Valout ⊂ dom(v) and
Val in ⊂ dom(v) such that Valout∩Val in = ∅. A solution to CP is a set of atoms
X = s′ \ s for some feature state s′ such that:
– no rule R of P with head(R) = vval, val ∈ Valout matches s′ and
– there is a rule R′ of P with head(R′) = vval

′
, val′ ∈ Val in that matches s′.

A solution to CP is minimal if no subset of the solution is also a solution.

Proposition 1 (Solution existence). A counterfactual explanation problem
CP = (P, s, v,Valout,Val in) has no solution iff there is no s′ ∈ SF such that:
– there is no rule R of P with head(R) = vval, val ∈ Valout such that R

matches s′ and
– there is a rule R′ of P with head(R′) = vval

′
, val′ ∈ Val in that matches s′.

Given a DMVLP and a feature state, the aim of counterfactual reasoning is
adjusting the feature state to prevent the program from producing unwanted out-
comes (Valout) while still allowing for the realization of acceptable ones (Val in).

Example 1. Consider the following DMVLP P such that F = {a, b, c}, T =
{y}, dom(a) = dom(b) = {0, 1}, dom(c) = dom(y) = {0, 1, 2}:

y0 ← a0

y0 ← b0

y0 ← c0

y1 ← b1

y1 ← a0 ∧ c1

y1 ← c2

y2 ← a1 ∧ b1 ∧ c2

Let CP := (P, s, y, {y1}, {y0, y2}) where s = {a0, b1, c1}. According to the
program, the values of y that can be realized from s are y0 (via rule y0 ← a0)
and y1 (via rules y1 ← a0 ∧ c1 and y1 ← b1). Counterfactual reasoning can be
used to find changes to s that seeks to eliminate y1 while allowing y0 or y2. The
minimal solutions for y0 are {{a1, b0}, {b0, c0}}. The first solution X1 = {a1, b0}
produces s′ = {a1, b0, c1}, where s′ is not matched by a rule producing y1 and



6 T. Ribeiro et al.

Algorithm 1 Näıve enumeration

– INPUT: a counterfactual explanation problem CP := (P, s, v,Valout,Val in).
– out rules := {R ∈ P | head(R) = vval, val ∈ Valout}
– For each val of Val in, in rulesval := {R ∈ P | head(R) = vval}
– For each val of Val in, solutionsval := ∅
– For each complete state s′ ∈ SF :
• If a rule of out rules matches s′: // Discard invalid state

∗ Continue
• For each val of Val in: // Extract valid changes to get vval

∗ If a rule of in rulesval matches s′:
· solutionsval := solutionsval ∪ {{x ∈ s′ | x ̸∈ s}}

– For each val of Val in: // Keep only minimal sets
• solutionsval := {x ∈ solutionsval | ∄x′ ∈ solutionsval, x

′ ⊂ x}
– OUTPUT: {solutionsval | val ∈ Val in}

s′ is matched by the rule y0 ← b0. The second solution, X2 = {b0, c0} produces
s′′ = {a0, b0, c0}, where s′′ similarly avoids the rules producing y1 while matching
y0 ← a0, y0 ← b0 and y0 ← c0.

However, there is no solution for y2 for CP because for any feature state s1
there is R = (y1 ← b1) in P , R does not match s1 thus b1 ̸∈ s1. Since the only
rule for y2 is R′ = (y2 ← a1 ∧ b1 ∧ c2), b1 must be in s1 for R′ to match s1.

Following Definition 7, we can find solutions by employing a straightforward
näıve enumeration algorithm. It generates all feature states that are not matched
by any rules in Valout but still allow for the realization of at least one rule in
Val in. The differences between these generated states and the original state s
yield the counterfactual solutions. Only minimal sets of changes are retained as
valid solutions. The pseudo code for this approach is provided in Algorithm 1.

Theorem 1 (Näıve enumeration Complexity).
Let CP := (P, s, v,Valout,Val in) be a counterfactual explanation problem. Let
n := |F| and d := max({|dom(v)|) ∈ N | v ∈ F ∪ T }. There are dn+1 pos-
sible rules R with head(R) = v. The worst-case time complexity of the Näıve
enumeration algorithm when solving CP belongs to O(|SF | × ndn+1). The
worst-case memory use belongs to O(|SF | × d).

Proof sketch. Generate all possible feature states: O(SF ). Compare each state
to rules in Valout: O(ndn+1). Same with rules in Val in: O(ndn+1). Compute
difference from original state s: O(n). Total time complexity: O(|SF |×(ndn+1+
ndn+1 + n)) wich belongs to O(|SF | × ndn+1). Memory complexity: store all
states for each Val in O(SF × d). ⊓⊔

With the näıve approach established, we now turn our attention to developing
a more efficient algorithm for solving counterfactual explanation problems.
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4 CELOS

We now introduce a more efficient approach for solving counterfactual expla-
nation problems over DMVLP. By leveraging properties inherent to inductive
logic programming, we have developed an algorithm, which we refer to as CE-
LOS. This method exploits these characteristics to find solutions more efficiently
compared to the näıve enumeration approach.

4.1 Learning operations

Before presenting CELOS, we introduce two key definitions: Definition 8 and
Proposition 2 enable us to determine if two rules share any common matching
states, avoiding the need to enumerate all possibilities. Definition 9 and Propo-
sition 3 allow us to modify a rule to ensure it does not match the same state as
another rule, which is needed in finding counterfactual solutions for a DMVLP.

Definition 8 (Rule cross-matching). Let R,R′ be two MVL rules. The rules
cross-match, denoted R⊓R′, if there exists a feature state s ∈ SF such that both
R and R′ match s.

Proposition 2. Let R,R′ be two MVL rules, they cross-match if and only if: for
any vval of body(R), if there exists vval

′ ∈ body(R′), it implies that val = val′.
Proof sketch. Sufficient condition: since R and R′ have no conflicting condi-
tions, there exists a state s that contains all the atoms in body(R) ∪ body(R′).
This state s is matched by both rules, meaning they cross-match. Necessary con-
dition: if R and R′ have conflicting conditions but still cross-match, this would
imply the existence of a state s containing conflicting values for the same vari-
able. Such a state s is invalid by Definition 2, leading to a contradiction. ⊓⊔

Following our exploration of rule cross-matching, we now introduce a novel
concept in rule specialization. While our previous work [18] focused on the least
specialization of a rule against a feature state, Definition 9 presents a different
approach that is tailored for counterfactual reasoning. This definition allows us
to specialize a rule in the minimal manner required to ensure that only the
common states with a second rule are not matched, as outlined in Proposition 3.

Definition 9 (Anti cross-matching least specialization). Let R,R′ be two
MVL rules that cross-match. The anti cross-matching least specialization of R
by R′ according to A is:

ACMLspe(R,R′,A) := {head(R)← body(R) ∪ {vval} |

vval
′
∈ body(R′), vval ∈ A, val ̸= val′}.

Proposition 3. Let R,R′ be two MVL rules. It holds that:

1. For any R′′ of ACMLspe(R,R′,A), R′′ and R′ do not cross-match.
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2. The feature states matched by ACMLspe(R,R′,A) are all the states matched
by R but not by R′′:

{s ∈ SF | R′′ ∈ ACMLspe(R,R′,A), R′′ ⊓ s} = {s ∈ SF | R ⊓ s,R′ ̸⊓ s}.

Proof sketch. First point: The introduction of an atom conflicting with R′ in
each rule of ACMLspe(R,R′,A) ensures that no rule in ACMLspe(R,R′,A) can
cross-match with R′. Second point: (⊆) By considering the fact that the rules
R′′ produced are dominated by R, and by construction. (⊇) By construction of
the rules R′′. ⊓⊔

4.2 Algorithm

In this section, we introduce CELOS: Counterfactual Explanation for LFIT
with Optimized Search, an algorithm inspired by the principles of GULA [18].
CELOS is designed to compute all optimal solutions for a counterfactual ex-
planation problem over a DMVLP. Unlike näıve enumeration, CELOS relies on
the rules to derive solutions, making it more scalable in terms of the number of
feature variables. Furthermore, it builds upon the proven efficiency of GULA’s
search operations. The core search loop of CELOS mirrors that of GULA, with
the primary difference being the nature of specialization:GULA specializes rules
against states, while CELOS specializes rules against other rules.

Algorithm 2 CELOS

– INPUT: a counterfactual explanation problem CP := (P, s, v,Valout,Val in).
– out rules := {R ∈ P | head(R) = vval, val ∈ Valout}
– For each val of Val in, in rulesval := {R ∈ P | head(R) = vval}
– For each val of Val in, solutionsval := ∅
– Initialize Pin := { ← ∅} // Rule head does not matter, only body is used
– For each rule R′ of out rules: // 1) Search necessary changes to avoid all Valout
• Extract and remove the rules of Pin that cross-match R′:

M := {R ∈ Pin | ∀vval ∈ body(R), vval′ ∈ R′ =⇒ val = val′}
• Pin := Pin \M
• LS := ∅
• For each rule R of M :

∗ Compute its rule least specialization P ′
in = ACMLspe(R,R′,A)

∗ Remove rules in P ′
in dominated by a rule in Pin

∗ LS := LS ∪ P ′
in

• Add all remaining rules of LS to Pin: Pin := Pin ∪ LS
– For each val of Val in: // 2) Compute necessary changes to produce a Val in
• For each R of in rulesval, for each R′ of in rulesval:

∗ If R,R′ cross-match: // Combine and extract changes with state s
· candidate := {x ∈ (body(R) ∪ body(R′)) | x ̸∈ s}
· solutionsval := solutionsval ∪ {candidate}

• solutionsval := {S ∈ solutionsval | ∄S′ ∈ solutionsval, S
′ ⊂ S}

– OUTPUT: {solutionsval | val ∈ Val in}
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CELOS accepts as input a counterfactual explanation problem CP such
that CP := (P, s, v,Valout,Val in), where P is a DMVLP, s is a feature state,
v is a target variable, and Valout, Val in are sets of integers. The algorithm be-
gins similarly to the näıve approach by isolating the rules of Valout and Val in
into separate sets. It then iteratively constructs a set of rules that do not cross-
match any rules of Valout, leveraging a modified version of the operations used
in GULA but incorporating our novel anti cross-matching least specialization
method (Definition 9). The body of these generated rules represents the neces-
sary conditions for a feature state to evade matching by any rule of Valout. Next,
CELOS unifies these obtained rule sets with each rule of Val in to produce sets
of atoms that ensure no overlap with out rules while maintaining compatibility
with in rules. By computing the difference between these sets and the given fea-
ture state s, and retaining the minimal set of changes,CELOS efficiently derives
minimal solutions to the counterfactual explanation problem. The algorithm’s
pseudocode is provided in Algorithm 2.

Theorem 2 outlines the key properties of CELOS: the algorithm always
terminates and produces all and only the minimal solutions to the given coun-
terfactual explanation problem. Finally, Theorem 3 characterizes the algorithm’s
complexity in terms of both time and memory.

Theorem 2 (CELOS Termination, Soundness, Completeness, Optimal-
ity). Let CP be a Counterfactual explanation problem.

(1) Any call to CELOS(CP ) terminates,
(2) CELOS(CP ) is the set of all minimal solution to CP

Proof sketch. (1) Termination: The algorithm iterates over finite sets, ensuring
it always terminates. (2) Starting with empty rules and iteratively applying anti-
cross-matching least specialization guarantees a set of rules that match all states
except those matched by Valout rules. By unifying these rules with the conditions
from Val in rules and retaining only the minimal sets of changes, we obtain the
necessary conditions to avoid every Valout while having at least one Val in. These
resulting sets of conditions are precisely the minimal solutions to CP , and no
minimal solution is missed, otherwise it would contradict with Proposition 3. ⊓⊔

Theorem 3 (CELOS Complexity). Let CP := (P, s, v,Valout,Val in) be a
counterfactual explanation problem. Let n := |F| and d := max({|dom(v)| | v ∈
F ∪ T }) ∈ N. There are dn+1 possible rules R with var(head(R)) = v. The
worst-case time complexity of CELOS when solving CP belongs to O(n2dn). Its
worst-case memory use belongs to O(ndn+1).
Proof sketch. Extracting out rules and in rules sets: O(ndn). Iterating over
Pin rules and out rules applying anti-cross-match least specialization:O(n2ndn).
Fusion with rules of in rules and computing differences:O(n2dn). Total:O(ndn+
n2dn+n2dn) i.e., time complexity is O(n2dn). Storing all possible rules and least
specializations: O(ndn + ndn+1), i.e., memory complexity is O(ndn+1). ⊓⊔

Example 2. Let CP := (P, s, y, {y1}, {y0, y2}) be the counterfactual explanation
problem of Example 1. Table 1 shows the evolution of Pin over out rules and
the solution found through union of cross-matching rules with in rules during a
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call to CELOS(CP ). The rule with empty body is first revised against y1 ← b1

into ← b0. Then revised again by y1 ← a1 ∧ c1 into three rules. Two of them
(in red) are revised against the final rule y1 ← c2. The least specialization of
← b0 ∧ c2 by y1 ← c2 produces no rule. ← a1 ∧ b0 produces two rules but

one is dominated by ← b0 ∧ c0 (in blue) and thus discarded. Remain only two
rules: ← b0 ∧ c0 and ← a1 ∧ b0 ∧ c1. By making the union of those rules with
the one of in rules that cross-match, we obtain the solutions to CP that are
{a1 ∧ b0, b0 ∧ c0}.

• Pin = { ← ∅}
R′ ∈ out rules M Least specializations Pin

y1 ← b1 {∅} {b0} {b0}
y1 ← a0 ∧ c1 {b0} {a1 ∧ b0, b0 ∧ c0, b0 ∧ c2} {a1 ∧ b0, b0 ∧ c0, b0 ∧ c2}

y1 ← c2 {a1 ∧ b0, b0 ∧ c2} {a1 ∧ b0 ∧ c0, a1 ∧ b0 ∧ c1} {b0 ∧ c0, a1 ∧ b0 ∧ c1}
• s = {a0, b1, c1}

R ∈ in rules body(R′), R′ ∈ Pin, R ⊓R′ Candidates Diff with s

y0 ← a0 {b0 ∧ c0} {a0 ∧ b0 ∧ c0} {b0 ∧ c0}
y0 ← b0 {b0 ∧ c0, a1 ∧ b0 ∧ c1} {b0 ∧ c0, a1 ∧ b0 ∧ c1} {b0 ∧ c0, a1 ∧ b0}
y0 ← c0 {b0 ∧ c0} {b0 ∧ c0} {b0 ∧ c0}

y2 ← a1 ∧ b1 ∧ c1 ∅ ∅ ∅

Table 1: Iterative evolution of Pin over each element of out rules during the
execution of CELOS(CP ) over the counterfactual explanation problem CP of
Example 1. Head of rules are omitted for M , Least specializations and Pin.

5 Evaluation

In this section, we evaluate the scalability of CELOS using Boolean network
benchmarks from the biological literature (Boolenet [4] and Pyboolnet [9]) and
synthetic data. All experiments8 were performed on a single core of an AMD
Ryzen 9 (7950X, 4.5 GHz) with 64 Gb of RAM.

5.1 Biological literature benchmarks

In this section, we convert Boolean networks into DMVLPs where each variable v
of V has a Boolean domain (dom(v) = {0, 1}). The file formats described in [4,9]
provide Boolean functions for each variable in disjunctive normal form (DNF),
a disjunction of conjunction clauses that can be considered as a set of Boolean
atoms of the form v or ¬v. Each clause c of the DNF of a variable v is directly
converted into a rule R with head(R) = v1t and v′1t−1 ∈ body(R) ⇐⇒ v′ ∈ c

8 Source code is available at: https://github.com/Tony-sama/pylfit in the folder
tests/evaluations/ijclr2025. All experiments were run with pylfit release version 0.5.1.

https://github.com/Tony-sama/pylfit
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Fig. 2: Runtime (in seconds, logarithmic scale) comparison of CELOS and
Näıve enumeration when applied to random counterfactual explanation prob-
lems derived from Boolean networks with 10 to 40 variables. The experiments
used 100 runs per target variable value, with a timeout of 1, 000 seconds.

and v′0t−1 ∈ body(R) ⇐⇒ ¬v′ ∈ c. To obtain the rules of v0t , we compute
the negation of the Boolean function and derive the minimal set of atoms that
make the resulting formula true. For each target variable v of T , we generate 100
random counterfactual explanation problems as follows. (1) Randomly select a
feature state s ∈ SF . (2) Determine Valout, as the head atom of the rules of v
that match s (all benchmarks are deterministic programs, thus |Valout| = 1). (3)
Select Val in, the other value from the target’s domain than the one in Valout
i.e., either Valout = {0} and Val in = {1}, or Valout = {1} and Val in = {0}. It
ensures changes must be find to solve the counterfactual problem.

As shown in Figure 2, the runtime (in seconds) of Algorithm 1 and Algo-
rithm 2 increases as the number of variables in the Boolean network benchmarks
grows. The näıve method requires enumerating all possible feature states, lead-
ing to rapid exponential explosion and timeouts (1000 seconds) on benchmarks
with more than 15 variables. In contrast, CELOS only processes the rules of the
DMVLP, allowing it to solve all benchmarks in under a second. It’s important to
note that the rules in these benchmarks are relatively simple, typically contain-
ing fewer than 6 conditions per rule and rarely more than 10 rules per variable.
This simplicity enables CELOS to achieve such fast computation times.

5.2 Synthetic DMVLPs

While the biological benchmarks were relatively easy for CELOS due to their
simplicity at the rules level, we also conducted experiments on synthetic DMVLPs.
We consider DMVLPs with only one target variable where all features and the
target variable v have the same number of domain values. We first generate a
random state feature s and randomly select one target value to avoid and one to
obtain: Valout = {vval} and Val in = {vval′} with vval ̸= vval

′
. We then generate

a fixed number of rules for each target value by randomly adding conditions,
ensuring that all rules of vval match the state s while none of the rules of vval

′
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Fig. 3: Runtime (in seconds, logarithmic scale) of Algorithm 2 when applied
to random counterfactual explanation problems from synthetic DMVLP with a
single target variable. The experiments used 10 runs for each problem setting.
Left: Increasing the number of variables from 10 to 18 while keeping the domain
size fixed at 3 and 20 rules per target value. Center: Increasing the domain size
from 2 to 6 while keeping the number of variables fixed at 10 and 20 rules per
target value. Right: Increasing the number of rules per target value while the
number of variables is fixed at 14 and the domain size is fixed at 3.

match s. This setup guarantees that changes are necessary to solve the counter-
factual problem. As shown in Figure 3, the runtime (in seconds) for synthetic
DMVLPs depends on the number of variables, domain values, and rules per tar-
get value. Using a base setting of 3 domain values and 20 rules per target value,
we performed three experiments. (1) Varying the number of variables from 10 to
18. (2) Increasing the domain size from 2 to 6. (3) Scaling the number of rules
per target from 10 to 10, 000. The results align with the complexity analysis in
Theorem 3: Runtime grows exponentially with the number of variables and do-
main values. It grows polynomially with the number of rules per target. Random
instances are particularly challenging due to the lack of useful patterns in the
rules, which prevent search space reduction. Despite these challenges, CELOS
can handle up to 18 variables with 3 domain values, even with thousands of rules
per target, which is promising for practical applications.

6 Related Works

Counterfactual reasoning has been extensively studied within the framework of
causal inference [10,13], particularly in Pearl’s structural equation models [16].
There is growing interest in applying counterfactual explanations to interpret
black box models [26,24]. Our work focuses on logic programs, which are human-
readable models (white box model) produced by LFIT, allowing us to directly
leverage the rules for efficient counterfactual search. In [17], the authors propose
an approach for generating contrastive explanations in inductive logic program-
ming, which are equivalent to finding counterfactual explanations. Their work fo-
cuses on first-order logic programs, whereas DMVLPs are based on propositional
logic. While they enumerate candidate solutions directly, our method CELOS
leverages the rules of the program to efficiently search for minimal counterfactual
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explanations. Regarding probabilistic logic programs, recent work by [8] extends
ProbLog, with the capability to process counterfactual queries. Empirical eval-
uations show that their top-down compilation method outperforms bottom-up
approaches in handling evidence and interventions, demonstrating scalability for
moderate program sizes.

There are many approaches for finding counterfactual explanations [6,5]. The
simplest method involves a brute force grid search over features (like our baseline
näıve enumeration algorithm), which is inefficient and scales poorly due to com-
binatorial explosion. Many existing methods use optimization techniques [26,3],
where a cost function measures the distance between original and counterfactual
instances, and optimization algorithms minimize this cost. Another approach
employs heuristic search strategies [11,25], which iteratively modify the original
instance until a valid counterfactual is found. These methods may be faster than
brute force and sometimes optimization methods, but can still suffer from local
optima and may not guarantee finding the best counterfactual explanations.

Generating meaningful counterfactual examples that aid comprehension re-
mains a challenge. To foster a deeper understanding of machine learning models,
we need a comprehensive set of such examples [22,14]. These examples should
cover a wide range of possible changes (diversity), highlight feasible changes
(proximity), and align with domain specific constraints. In this paper, we es-
tablished the theoretical foundations for finding counterfactual explanations in
DMVLP models and propose CELOS, a complete algorithm for finding all min-
imal solutions. Using heuristic methods to select interesting subsets of minimal
counterfactual explanations for LFIT is outside the scope of this work and left
for future research.

7 Conclusion

In this paper, we introduced a novel modeling approach to address the challenge
of generating minimal counterfactual explanations from DMVLP. We formalized
theoretical properties and guarantees that enable the discovery of all minimal
counterfactual explanations for a given DMVLP regarding specified desired and
undesired outcomes. To implement this approach, we proposed CELOS, an
algorithm designed to find these minimal solutions efficiently. Experimental re-
sults demonstrated the effectiveness and scalability of our method, marking a
significant advancement in logical modeling techniques with potential real-world
applications, particularly in fields like Systems Biology.

In our previous work [19], we introduced PRIDE, an algorithm for finding
a subset of the optimal DMVLP in polynomial time. The principles behind
PRIDE could potentially be adapted to efficiently extract a meaningful subset
of the counterfactual explanations generated byCELOS. This adaptation would
allow us to address larger problem instances in practice, which is a promising
direction for future research. In [20], we extended the LFIT framework to model
partially observable systems, i.e., learning DMVLP from data with unknown
values. Our method for generating counterfactual explanations can be applied
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to these models as well, broadening the applicability of our work to datasets
with partially observed information.

In the future, we envision leveraging the features involved in counterfactual
explanations as a novel metric to assess the sensitivity of rules learned by LFIT.
This metric could provide valuable insights into how robust the learned model
is to changes, helping us gauge its confidence and reliability. By integrating
this approach, we aim to enhance our understanding of the model’s behavior
and improve its applicability in real-world scenarios, particularly in medical and
biological contexts where precision is paramount.
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A Appendix: Proofs of Section 3

Theorem 1:
Let CP := (P, s, v,Valout,Val in) be a counterfactual explanation problem. Let
n := |F| and d := max({|dom(v)|) ∈ N | v ∈ F ∪ T }. There are dn+1 pos-
sible rules R with head(R) = v. The worst-case time complexity of the Näıve
enumeration algorithm when solving CP belongs to O(|SF | × ndn+1). The
worst-case memory use belongs to O(|SF | × d).

Proof. Each possible feature state is first compared to all rules in Valout. With
at most d values in Valout, dn rules per value and at-most n conditions per
rules, this step has a complexity of O(ndn+1). Matching is then checked over the
rules of Valin, which has the same complexity. Finally, computing the difference
between the state and the given state s takes O(n) time Thus, the complete
process of the algorithm has a time complexity of O(|SF |×(ndn+1+ndn+1+n))
i.e., O(ndn+1).

Regarding memory, in the worst case, all possible states could be solutions,
and all possible values of v could be in Valin. Therefore, the memory complexity
is O(|SF | × d). ⊓⊔

B Appendix: Proofs of Section 4

Proposition 2: Let R,R′ be two MVL rules, they cross-match if and only if: for
any vval of body(R), if there exists vval

′ ∈ body(R′), it implies that val = val′.

Proof. Sufficient Condition: assume that for all vval ∈ body(R) and vval
′ ∈

body(R′), val = val′. Then, there exists a state s ∈ SF such that (body(R) ∪
body(R′)) ⊆ s. Since body(R) ⊆ s and body(R′) ⊆ s, both rules R and R′

match s. Therefore, R and R′ cross-match.
Necessary Condition: now suppose that R and R′ cross-match but the prop-

erty does not hold. Then, there exists a state s ∈ SF such that R⊓ s and R′ ⊓ s.
This implies body(R) ⊆ s and body(R′) ⊆ s. However, since the property does
not hold, there exist vval ∈ body(R) and vval

′ ∈ body(R′) such that val ̸= val′.
This means that s contains conflicting values for the same variable, which is not
allowed in a valid discrete state. This contradiction shows that the property is
indeed necessary. ⊓⊔

Proposition 3: Let R,R′ be two MVL rules. It holds that:

1. For any R′′ of ACMLspe(R,R′,A), R′′ and R′ do not cross-match.
2. The feature states matched by ACMLspe(R,R′,A) are all the states matched

by R but not by R′′:

{s ∈ SF | R′′ ∈ ACMLspe(R,R′,A), R′′ ⊓ s} = {s ∈ SF | R ⊓ s,R′ ̸⊓ s}.
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Proof. First point: according to Definition 9, for any ruleR′′ ∈ ACMLspe(R,R′,A),
there exists a pair of atoms vval

′ ∈ body(R′) and vval
′′ ∈ body(R′′) such that

val′ ̸= val′′. By the Proposition 2, this ensures that R′ and R′′ do not cross-
match, i.e., R′ ̸⊓ R′′.

Second point: let M := {s ∈ SF | R′′ ∈ ACMLspe(R,R′,A), R′′ ⊓ s} be the
set of states matched by the least specialization of R against R′, and N := {s ∈
SF | R ⊓ s,R′ ̸⊓ s} the set of states matched by R but not by R′.

(⊆) Consider s ∈ M . First, suppose by contradiction that R ̸⊓ s. By defini-
tion of matching, this means there exists an atom vval ∈ s and vval

′ ∈ body(R)
with val ̸= val′. However, for all R′′ ∈ ACMLspe(R,R′,A), there is: body(R) ⊂
body(R′′), therefore R′′ ̸⊓ s. This contradicts the assumption that s ∈M . There-
fore, M can only contain states matched by R. Second, by the first point of the
proof, since R′′ ⊓ s, it comes: R′ ̸⊓ s. Therefore, S ∈ N .

(⊇) Consider s ∈ N . Since R ⊓ s, this means that body(R) ⊆ s. Moreover,
since R′ ̸⊓ s, this means that there exists vval

′ ∈ body(R′) and vval ∈ A with
val ̸= val′ so that vval ∈ s. Consider the ruleR′′ := head(R)← body(R)∪{vval}.
We thus have: R′′ ⊓ s, and by Definition 9: s ∈M . ⊓⊔

Theorem 2: Let CP be a Counterfactual explanation problem.
(1) Any call to CELOS(CP ) terminates,
(2) CELOS(CP ) is the set of all minimal solution to CP

Proof. (1) The algorithm operates on finite sets, ensuring that it always ter-
minates after a finite number of iterations.

(2) The main loop of CELOS begins with an initial rule whose empty body
matches all possible feature states. Iteratively, the algorithm applies the least
specialization operation to each rule in out rules, ensuring that no rule in Pin

cross-matches with any rule in out rules while still matching all states that were
previously matched. This guarantees that the rules in Pin only match states that
are not covered by the rules in out rules.

For each val ∈ V alin, the algorithm combines the body of the rules in Pin

with the body of the rules in in rules(val). The resulting sets of atoms, when
present in a state, ensure the state is not matched by any rule in out rules
but is still matched by at least one rule in in rules(val). Finally, the algorithm
computes the minimal difference between these sets and the given feature state s,
yielding the minimal sets of changes required to transform s into a solution of
the counterfactual explanation problem. Thus, CELOS outputs precisely those
minimal sets of changes that ensure the resulting state is not matched by any
rule of V alout but is matched by at least one rule of V alin, which corresponds
exactly to minimal solutions of the CP.

Now, let us suppose that CELOS missed some minimal solution: there exists
s′ ∈ SF such that there exists no R ∈ out rules with R ⊓ s′ and there exists
R′ ∈ in rules with R′⊓s′, but there exists no sol ∈ CELOS(CP ) with sol ⊆ s′.
Since there exists no R ∈ out rules with R⊓s′, our previous analysis shows that
there exists R′′ ∈ Pin with R′′ ⊓ s′. And since there exists R′ ∈ in rules with
R′ ⊓ s′, CELOS would have generated a solution sol ⊆ body(R′′) ∪ body(R′)
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that is a subset of s′. This contradicts the assumption that CELOS missed
this solution. Therefore, CELOS outputs every possible minimal solution to
the given counterfactual reasoning problem (CP). ⊓⊔

Theorem 3: Let CP := (P, s, v,Valout,Val in) be a counterfactual explanation
problem. Let n := |F| and d := max({|dom(v)| | v ∈ F ∪ T }) ∈ N. There are
dn+1 possible rules R with var(head(R)) = v. The worst-case time complexity
of CELOS when solving CP belongs to O(n2dn). Its worst-case memory use
belongs to O(ndn+1).

Proof. Initialization Phase: The algorithm first isolates the rules belonging
to out rules and in rules sets, which takes O(ndn) time. Search Phase: The
algorithm iterates over a set of rules Pin with the same head. There are at most
dn possible distinct rule bodies, so |Pin| ≤ dn. Since each rule has at most n
conditions, the memory usage for storing Pin is O(ndn). For each rule R′ ∈
out rules, the algorithm identifies rules in Pin that cross-match R′ and isolates
them into a set M . This extraction step has a time complexity of O(ndn). Each
rule in M undergoes anti-cross-match least specialization, which takes O(n2)
time per rule. Since |M | ≤ dn, the total time for all revisions is O(n2dn). The
resulting least specialization rules are stored in a list LS. There are at most dn
revisions per rule, so |LS| ≤ dn × dn. This extends the memory usage bound to
O(ndn + ndn+1). Final Phase: The algorithm compares rules in Pin for cross-
matching with all rules in in rules. This step has a time complexity of O(ndn).
Additionally, the algorithm computes the difference between rule bodies and the
given state s, which takes O(n) time per comparison. This contributes an overall
time complexity of O(n2dn) for this phase. Overall Complexity: Combining all
phases, the worst-case time complexity of CELOS is O(ndn+n2dn+n2dn) i.e.,
On2dn). The worst-case memory use remains O(ndn + ndn+1) i.e., O(ndn+1).

⊓⊔
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