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Abstract. Repressilators are biological regulatory networks in which
components interact only in terms of negative influences. They are of
interest in biology, since their oscillatory behavior can inform the de-
sign of gene therapies. Although sustained oscillations are ensured in
3-dimensional repressilators, that is, in systems made of 3 genes, they
do not always appear in higher dimensions, as their occurrence depends
on the topology of the network and on the chosen parameters. Here we
focus on discrete models, where the presence of at least one cyclic attrac-
tor is required for sustained oscillations. Even in a discrete framework,
enumerating and simulating all possible models can quickly become com-
putationally infeasible. In this paper, we provide a sufficient condition for
the presence of sustained oscillations for a class of repressilators, based
on the structure of their influence graphs. The condition applies in any
dimension and independently of the parameters, that is, threshold label-
ing of the edges. We also study the coexistence of cyclic attractors and
fixed points in dimension 4.

Keywords: Discrete regulatory networks · Interaction graph · Repres-
silators · Static analysis · Attractors.

1 Introduction

Gene expression has generally two major steps: transcription, that generates
mRNA from genes, and translation, that generates proteins from mRNA. A
generated protein can be structural (giving it a particular structural property)
or be an enzyme (catalyzing a certain reaction). Additionally, it can also serve to
activate or inhibit other genes. These regulations (activation or inhibition) be-
tween genes give rise to gene regulatory networks, which play a key role in various
cellular processes and pathways [Kauffman, 1969,Thomas, 1973,de Jong, 2002].

One major challenge associated to gene regulatory networks is the analysis
of their dynamical properties. In the literature, various classes of these prop-
erties have been studied, such as the existence of oscillations or fixed points
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[Melkman et al., 2010,Akutsu et al., 2012,Comet et al., 2013], state reachability
[Batt et al., 2008,Paulevé et al., 2012,Mendes et al., 2018], or more complex prop-
erties described by temporal logic [Bernot et al., 2004]. Identifying the dynam-
ical properties of gene regulatory networks enables the correction of inaccurate
models, the prediction of a system’s behavior, and even the discovery of new
strategies for regulating specific parts of the network.

However, studying such properties often requires to exhaustively compute
the dynamics of the model, either completely or partially. This computation can
be very time-costly since it usually has an exponential complexity in the size
of the model, which is typically determined by the number of genes. Several
techniques exist to speed up the process (such as model reduction, see for in-
stance [Naldi et al., 2011]), but these do not reduce the inherent complexity of
the problem. Thus, when possible, relying on static analysis is an interesting
alternative. Static analysis consists in computing dynamical properties based
only on the topology of the model, thus avoiding the exhaustive computation
of the dynamics. This results in a drastic decrease in computational complexity
although, so far, ad hoc techniques or properties must be found for each problem
addressed [Paulevé and Richard, 2012,Gadouleau, 2020].

In the literature, different modeling frameworks have been applied to model
gene regulatory networks, mainly including probabilistic, continuous, discrete or
hybrid approaches [de Jong, 2002]. This work uses Thomas’ discrete modeling
framework [Thomas, 1973,Thomas, 1991], where the continuous expressions of
the genes are abstracted by an integer vector called a state, which describes the
discrete expression levels of genes, so that the dynamics of the system can be
represented by a state transition graph. One major advantage of using discrete
modeling is its simplicity in implementation and analysis. Based on this discrete
modeling framework, one can describe the dynamical properties in terms of the
existence of different attractors (fixed points and cyclic attractors) in the state
transition graph. The significance of attractors lies in their representation of the
system’s long-term behavior, which typically corresponds to the phenotype of a
living organism.

This study considers the problem of determining to what extent the presence
of a certain type of attractors (fixed points, cyclic attractors, or both) which
generally depend on both the structure of the regulations and the specific mod-
eling formalism, can be inferred solely from the topology of the interaction graph.
The interaction graph of a gene regulatory network is a directed graph where
the vertices represent the genes and the arcs represent the regulations between
genes. We study a class of gene regulatory networks, called n-dimensional repres-
silators, which are n-dimensional networks with only inhibitions between genes.
The 3-dimensional repressilator, consisting of a single negative feedback loop,
was widely studied in synthetic biology because it can generate synthetic oscil-
lations [Potvin-Trottier et al., 2016,Elowitz and Leibler, 2000]. However, adding
more genes to this network tends to improve the controllability of this model
[Page, 2019,Perez-Carrasco et al., 2018,Goh et al., 2008]. In [Sun et al., 2023], a
sufficient and necessary condition for the existence of a cyclic attractor in the
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particular case of 4-dimensional repressilators was discovered by machine learn-
ing models. Here we describe conditions for the existence of fixed points or cyclic
attractors in n-dimensional repressilators without resorting to machine learning
techniques. The first contribution is the formulation of a sufficient and necessary
condition for the existence of fixed points in n-dimensional repressilators, which
also leads to a sufficient condition for the existence of cyclic attractors. Note that
this result has already been reported in [Richard and Ruet, 2013, Proposition 4]
for a subclass of Boolean models. We then state a sufficient condition for the
coexistence of fixed points and cyclic attractors in n-dimensional repressilators.
Finally, we prove that this sufficient condition is also a necessary condition in
the case of 4-dimensional repressilators, which is compatible with the results in
[Sun et al., 2023].

2 Definitions

In this work, we consider a subset of multi-valued networks, also often called
Thomas models [Thomas, 1973,Thomas, 1991]. Indeed, we consider discrete net-
works on n species with interaction graphs admitting inhibition interactions only,
and call these interaction graphs repressilator interaction graphs. We consider
only repressilators without self-loops, and with the following dynamical rule: one
in-neighbor is sufficient to decrease the target value. This means in particular
that the asynchronous dynamics is uniquely defined by the interaction graph and
the threshold assignment, that is, the labeling of the arcs indicating at which
expression level the source gene starts expressing its influence on the target gene.
The same assumption was also made in [Sun et al., 2023]. However, contrary to
the other assumptions of the same article, here we do not assume that every
vertex is the regulator of at least one other vertex and that a different threshold
exists for each target, and we do not limit the networks to 4 components.

To simplify the discussion, we assume, without loss of generality, that the
directed graph underlying the interaction graph is connected. If this condition is
not satisfied, the asynchronous dynamics associated to the interaction graph can
be described as the Cartesian product of the asynchronous dynamics associated
to each connected component. In particular, the dynamics admits a cyclic at-
tractor if and only if any of the dynamics associated to a connected component
admits a cyclic attractor.

Definition 1. For a repressilator interaction graph G, let V = {0, . . . , n−1} be
the set of vertices, and E the set of directed edges. A maximum level assignment
m : V → N\{0} associates a strictly positive maximum level to each vertex in G.
For simplicity, for each vertex i ∈ V , we write mi instead of m(i). Thus, X =
{0, . . . ,m0} × · · · × {0, . . . ,mn−1} is the state space of the dynamics associated
to G.

For convenience, in the rest of this paper, and since we model only negative
regulations, if i, j ∈ V are two vertices such that there is an edge (i, j) ∈ E, we
say that i inhibits j, i is called an inhibitor of j, and the edge (i, j) is called an
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inhibition. Recall that the sign of a path in an interaction graph is the product
of the sign of its arcs. Hence, in a repressilator graph, a cycle is negative if and
only if it contains an odd number of arcs.

Definition 2. Let G be an interaction graph and m a maximum level assign-
ment. A threshold assignment t : E → N associates a threshold to each edge in
G so that, for each edge (i, j) ∈ E, 0 < t(i, j) ≤ mi.

Let d(x, y) denote the Hamming distance between x, y ∈ X. Moreover, if
x ∈ X and i ∈ V , xi denotes the ith component of state x.

Definition 3. Given a repressilator interaction graph G, a maximum level as-
signment m and a threshold assignment t, AD(G,m, t) is the associated asyn-
chronous state transition graph, also called asynchronous dynamics, defined as
follows: for i ∈ V and x, y ∈ X,

– there is a transition from x to y with d(x, y) = 1 and yi = xi +1 if and only
if xi < mi and xj < t(j, i) for all inhibitors j of i;

– there is a transition from x to y with d(x, y) = 1 and yi = xi − 1 if and only
if xi > 0 and there exists j an inhibitor of i such that xj ≥ t(j, i).

In a nutshell, any inhibition pushes the level of the target vertex towards zero,
while, in absence of any inhibition, the level of the vertex is allowed to grow
towards its maximum, in a stepwise fashion.

Definition 4. An attractor of AD(G,m, t) is a terminal strongly connected
component of the state transition graph. Attractors are called fixed points if
they consist of one state, and cyclic attractors otherwise.

This definition is the classic definition of an attractor, modeling the long-term
oscillating behavior of a system. The condition of strong connectedness ensures
that all states within the attractor are mutually reachable, while terminality
ensures that the system’s dynamics cannot escape these sets [Comet et al., 2013].

Remark 1. The state x with xi = 0 for all i ∈ V has indegree zero in AD(G,m, t)
for all repressilator graphs G and threshold assignments t. In other words, the
state where all vertices are at level 0 can only be a source state. This is a
consequence of the fact that we only consider repressilators without self-loops: a
state where only one vertex is at level 1 cannot see this vertex decrease, because
no inhibitions are expressed.

More generally, consider the set S = {x ∈ X | xi < t(i, k) for all (i, k) ∈ E}.
All states in this set contain only vertices values that are below the thresholds
of the interaction graph, meaning that no inhibition is expressed. Thus, any
dynamical transition from a state in S can only lead to a state with one increased
value (first case in Definition 3). The consequence is that from any state in S,
there exists a path of successive transitions that exits the set S. Moreover, there
exists no transition from a state y ∈ X \ S to a state x ∈ S, implying that the
states in S cannot be part of an attractor.
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For a graph G and a subset A of the vertices, we write G[A] for the subgraph
of G induced by A.

We call a subspace a subset of the state space X obtained by fixing some
vertices. In more detail, consider a set C ⊆ V and a map I : C → N that satisfies
I(i) ≤ mi for all i ∈ C. Then the set κC,I = {x ∈ X | xi = I(i) for all i ∈ C} is
the subspace of X defined by C and I.

It is often useful to view a subspace κC,I as a smaller state space contained in
the state space X. Given a repressillator (G,m, t), one can consider the subgraph
of the asynchronous dynamics AD(G,m, t) induced by the vertices in κC,I , and
ask whether the dynamics thus obtained can be viewed as the dynamics asso-
ciated to some repressilator. This is not the case in general, but works when
I(i) = 0 for all i ∈ C, as described in the following remark.

Remark 2. Given a subspace κC,I with I(i) = 0 for all i ∈ C, consider the set of
vertices V ′ = V \C, and define a maximum level assignment m′ as the restriction
of m to V ′. The subspace can be viewed as a state space via the isomorphism
π : κC,I → X ′, with X ′ =

∏
i∈V \C{0, . . . ,mi}, so that for all x ∈ κC,I , π(x) =

(xi)i∈V \C . In other words, this isomorphism projects the components of x onto
the components in V \ C. We show that the subgraph of AD(G,m, t) induced
by the vertices in κC,I (on the state space X ′, via the isomorphism π) is the
dynamics AD(G′,m′, t′) associated to the repressilator interaction graph G′ =
G[V ′] with threshold assignment t′ given by the restriction of t to the edges in
G[V ′] (edges that have both endpoints in V ′).

– Suppose that there is a transition in AD(G′,m′, t′) from x to y in κC,I , and
that yi = xi + 1. Then i is in V ′, and the transition is also a transition in
AD(G,m, t). Hence xi < mi = m′

i and xj < t(j, i) = t′(j, i) for all inhibitors
j of i, and in particular, for all inhibitors in V ′. Vice versa, take x ∈ κC,I

and suppose that xi < m′
i and xj < t′(j, i) for all inhibitors j ∈ V ′ of i.

Then xi < mi, and since xj = 0 for all j outside of V ′, we have xj < t(j, i)
for all inhibitors j of i in V . Hence a transition from x to y with yi = xi +1
exists in AD(G,m, t) and in its restriction to κC,I .

– Suppose that there is a transition in AD(G′,m′, t′) from x to y in κC,I , and
that yi = xi − 1. Then i is in V ′, and the transition is also a transition in
AD(G,m, t). Hence xi > 0 and there exists j ∈ V inhibitor of i such that
xj ≥ t(j, i). Since t(i, j) > 0, j is not in C. Vice versa, take x ∈ κC,I and
suppose that xi > 0 and xj ≥ t′(j, i) for some inhibitor j ∈ V ′ of i. Then
there is a transition from x to y with yi = xi − 1 in AD(G,m, t), and also in
its restriction to κC,I .

2.1 Stable dominating sets

We now introduce a definition that will be useful for the of analysis of repressi-
lator attractors.

Definition 5. Let A ⊆ V be a non-empty set of vertices. If there exists no edge
(i, j) ∈ E with i ∈ A and j ∈ A, then A is called an independent set. If for all
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j ∈ V \A, there exists i ∈ A such that (i, j) ∈ E, then A is called a dominating
set. If A is both an independent and dominating set, then it is called a stable
dominating set.

The set A of this definition is a set of vertices that do not inhibit each other,
and that, taken together, inhibit all vertices outside of A. For n = 1, there is
only one repressilator interaction graph, the graph with the empty set of edges
E, and A = V = {0} is its only stable dominating set. Note that the case A = V
cannot exist for n > 1 since we suppose in this work that the interaction graph is
connected, thus preventing V to be a stable dominating set. For n = 2, a stable
dominating set also always exists:

– If there is an edge from vertex 0 to vertex 1, then A = {0} is a stable
dominating set, whether an edge from 1 to 0 exists or not.

– If there is an edge from vertex 1 to vertex 0, then A = {1} is a stable
dominating set, which is not incompatible with the previous case as several
stable dominating sets can coexist.

– The case where there there is no edge is out of scope since we suppose that
the interaction graph is connected. This case could be tackled by considering
it as a composition of two models of size n = 1.

0 1

2 3

0 1

2 3

Fig. 1. Left: interaction graph always having a cyclic attractor. Right: interaction graph
never having a cyclic attractor. Reproduced from [Sun et al., 2023, Figure 5].

Example 1. Consider the graphs in Figure 1. For the graph on the right, A =
{1, 3} is a stable dominating set (no edges between 1 and 3, while 0 and 2 are
inhibited by 1). The graph on the left does not admit any stable dominating
set: no single vertex inhibits all other vertices; considering pair of vertices, 0 and
3 are the only vertices that do not inhibit each other, but they do not inhibit
vertex 2.

We will use the stable dominating sets of Definition 5 to characterize the
fixed points of the dynamics. To this end, given a subset A of V , we define a
state ϕ(A) ∈ X associated to A as follows:

ϕ(A)i =

{
mi if i ∈ A,

0 otherwise,
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for all i ∈ V , where ϕ(A)i is the ithcomponent of ϕ(A). Equivalently, for all
i ∈ V , ϕ(A)i = 1A(i) ·mi, where 1A is the indicator function of A.

3 Results

3.1 Sufficient condition for the existence of cyclic attractors

The following theorem explains the rationale behind the name “stable dominating
sets”. The notion of stable dominating set is actually closely related to the notion
of kernel as recalled in [Richard and Ruet, 2013], where it is used to prove the
same result for a class of Boolean models. Here, the result is generalized to
multi-valued networks.

Theorem 1. A state x ∈ X is a fixed point for the dynamics associated to
a repressilator interaction graph G if and only if x = ϕ(A) for some stable
dominating set A ⊆ V .

Proof. (1) We first show that, if A ⊆ V is a stable dominating set for G, then
ϕ(A) is a fixed point.

For i in A, all the inhibitors of i are outside A. Hence, at ϕ(A), all inhibitors of
i are below the threshold required for the inhibition, and ϕ(A)i cannot decrease.

For i outside A, there is at least one inhibitor in A, at its maximum value,
hence above the threshold. Therefore ϕ(A)i cannot increase.

(2) Suppose now that x is a fixed point. Define A = {i ∈ V | xi > 0}.
If i is in A, since x is a fixed point, all its repressors must be below the relative

threshold. Moreover, since the value of xi cannot increase and all its inihibitors
are below threshold, the value of xi must be maximum. Since all inhibitors B
of vertices in A are below the threshold for the inhibition, and all components
in A are at maximum levels, all components in B must be at zero, that is, all
inhibitors of vertices in A must be outside A (A is an independent set).

If i is outside of A, since xi is zero and cannot increase, it must have an
inhibitor that is above threshold, that is, an inhibitor that is in A (A is a domi-
nating set). ⊓⊔

It is noteworthy that the result of Theorem 1 is independent of the chosen
threshold assignment.

Corollary 1. The dynamics associated to a repressilator interaction graph G
has a fixed point if and only if the graph G admits a stable dominating set.

Corollary 2. If a repressilator interaction graph G does not admit a stable dom-
inating set, then it has a cyclic attractor.

The previous corollary establishes a sufficient condition for the existence of cyclic
attractors, based on the absence of fixed points. Before moving on to consider
situations where fixed points and cyclic attractors coexist, we make some simple
observations on the dynamics.
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Proposition 1. If A is a stable dominating set for G with maximum level as-
signment m, then, for any threshold assignment t and for any state x such that
xi = 0 for all i ∈ V \A, there is a path from x to ϕ(A) in AD(G,m, t).

Proof. Since all the inhibitors of vertices in A are outside A, the components in
A are free to increase to their maximum levels. ⊓⊔

Proposition 2. If A is a stable dominating set for G with maximum level as-
signment m, then, for any threshold assignment t and for any state x such that
xi = mi for all i ∈ A, there is a path from x to ϕ(A) in AD(G,m, t).

Proof. All components outside A are inhibited by vertices in A in all states x
that satisfy xi = mi for all i ∈ A. ⊓⊔

We say that a vertex i oscillates in an attractor A if there exists x, y in A
with xi ̸= yi.

Proposition 3. If a vertex i oscillates in an attractor A, then

(i) there exists a state x ∈ A such that xi = 0;
(ii) there exists a state x ∈ A such that xi = mi.

Proof. If vertex i oscillates in an attractor A, then there exist a transition be-
tween two states in A that decreases the value of component i. Say that this
transition is from state x to state y. This means that at x component i is inhib-
ited. Since the transition graph is asynchronous, x and y differ only in component
i; therefore, since there are no self-inhibitions, component i is inhibited in state
y as well, meaning that state y has a successor z with component i satisfying
zi < yi, and component i can continue to decrease until 0 is reached.

The proof for point (ii) proceeds the same way. ⊓⊔

3.2 Coexistence of fixed points and cyclic attractors

We first give a sufficient condition for the coexistence of fixed points and cyclic
attractors, valid in any dimension. In the next section, we show that the condition
is also necessary for n = 4.

Theorem 2. Consider a repressilator interaction graph G and suppose that
there exists a stable dominating set A such that the subgraph G[V \ A] admits
no stable dominating set. Take B ̸= ∅ any minimal subset of V \ A such that
G[B] does not admit a stable dominating set. If all vertices in B inhibit all ver-
tices in V \B, then there exist a maximum level assignment m and a threshold
assignment t such that the dynamics AD(G,m, t) admits a cyclic attractor.

Proof. Let C = V \ B and consider a threshold assignment t : E → N+ that
satisfies the following property: for all i, k ∈ B and j ∈ C such that (i, j) ∈ E
and (i, k) ∈ E are edges in G, t(i, j) ≤ t(i, k). That is, the thresholds for vertices
in B to inhibit vertices in B cannot be below the thresholds of inhibitions of
vertices in B to vertices in C.
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Let κC,I be the subspace of X such that I(i) = 0 for all i ∈ C, that is,
where the vertices in C are fixed to zero. By Remark 2, the restriction AD′

of AD(G,m, t) to κC,I , defined on the state space X ′ via the isomorphism
π : κC,I → X ′, admits G[B] as interaction graph. Hence, by Corollary 2, the
dynamics AD′ admits a cyclic attractor.

Let A′ ⊆ X ′ be a set of states that defines a cyclic attractor in AD′, and let
A = π−1(A′). We want to show that A is a cyclic attractor in AD(G,m, t).

Since A′ is strongly connected, A is also strongly connected. To conclude the
proof, we show that A is terminal, that is, it admits no outgoing transition.

For this, it is sufficient to show that, given a state x in A, for all j ∈ C
there exists i ∈ B such that xi ≥ t(i, j), meaning that component j is inhibited
by i and cannot change. Suppose by contradiction that, for some j ∈ C, xi <
t(i, j) for all i ∈ B (recall that j is inhibited by all vertices in B). Then, by
definition of the threshold function t, if (i, k) is an edge in E with k ∈ B, we
have xi < t(i, j) ≤ t(i, k), that is, xi is below the thresholds for the inhibition
from i to any vertex in B. Now, recall that state π(x) is part of the attractor A′

of AD′. On the other hand, the state π(x) satisfies the conditions of Remark 1
(πi(x) = xi < t(i, k) = t′(i, k) for all i, k ∈ B with (i, k) an edge in G[B]).
Therefore π(x) cannot be part of an attractor, a contradiction. ⊓⊔

Remark 3. The proof of the theorem provides a family of threshold assignments
for which AD(G,m, t) admits both a fixed point and a cyclic attractor, under
the stated hypotheses. In particular, we showed that we can always take the
constant threshold assignment t = 1. The result applies therefore also to Boolean
repressilators (systems that satisfy mi = 1 for all i ∈ V ).

Example 2. Consider the interaction graph G in Figure 2, without taking into
account the threshold assignment. This interaction graph contains the stable
dominating set A = {4}, and the interaction graph G[V \ A] = G[{0, 1, 2, 3}]
contains no stable dominating set. Indeed, any singleton subset of V \ A does
not inhibit all other vertices in V \A, and any subgraph with two or more vertices
in V \ A contains at least one edge. Consider B = {0, 1, 2} ⊂ V \ A; it is easy
to see that B does not contain a stable dominating set for G[B] for the same
reasons as above. Moreover, B is minimal for this property, since any interaction
graph in dimension 1 or 2 always contains a stable dominating set, as explained
after Definition 5. Finally, since each node in B inhibits all nodes in V \ B =
{3, 4}, then Theorem 2 applies: there exists a threshold assignment such that the
asynchronous dynamics of G admits a cyclic attractor. An example of such an
assignment is the one given in Figure 2, that produces an asynchronous dynamics
containing both the fixed point 00004, and the following cyclic attractor:

{00300, 01300, 02300, 03000, 03100, 03200, 03300,
10300, 11300, 12300, 13000, 13100, 13200, 13300,

20300, 21300, 22300, 23000, 23100, 23200, 23300,

30000, 30100, 30200, 30300, 31000, 31100, 31200, 31300,

32000, 32100, 32200, 32300, 33000, 33100, 33200}
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Fig. 2. Interaction graph of dimension 5 with a threshold assignment.

3.3 Case n = 3

We first characterize the only possible cyclic attractor in dimension n = 3, which
will be used in later proofs.

Remark 4. Consider a repressilator G with set of vertices V of size 3, and sup-
pose that, for some maximum level assignment m and threshold assignment t,
AD(G,m, t) admits a cyclic attractor A where all three vertices oscillate. Then
G consists in an isolated cycle. To see this, first observe that all 3 vertices must
have an incoming edge. Then, suppose for a contradiction that one vertex i is
the source of two edges which target the other two vertices. Then {i} is a stable
dominating set. By Proposition 3, there exists a state x ∈ A with xi = mi.
Then, by Proposition 2, there is a path in AD(G,m, t) from x to ϕ({i}), which
is a fixed point by Theorem 1, a contradiction.

The remark implies, in particular, that in a cyclic attractor in dimension 3,
for each pair of vertices i and j that oscillate in the attractor, there exists x ∈ A
such that xi = 0 and xj = 0.

Note that this property does not hold in general for attractors in higher
dimensions. Consider for instance the repressilator interaction graph with 6 ver-
tices defined in Figure 3. The asynchronous dynamics associated to this graph
has one cyclic attractor with states:

{010200, 011200, 012000, 012100, 012200,
100002, 100012, 100020, 100021, 100022,

110000, 110001, 110002, 110010, 110011, 110012, 110020,

110021, 110100, 110200, 111000, 111100, 111200, 112000, 112100}

Taking i = 0 and j = 1, we observe that both vertices oscillate in the attractor,
but the attractor does not contain a state x with xi = xj = 0.
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Fig. 3. Interaction graph of dimension 6 with a threshold assignment.

3.4 Case n = 4

In dimension n = 4, we can fully characterize the repressilator interaction graphs
that admit a dynamics with a cyclic attractor. We start by showing that, in di-
mension 4, if the dynamics has a cyclic attractor, then the interaction graph
cannot have a stable dominating set that contains more than one vertex. Intu-
itively, a stable dominating set cannot intersect the negative cycle associated to
the cyclic attractor.

Lemma 1. Consider n = 4. Suppose that AD(G,m, t) has a cyclic attractor.
Then G cannot have a stable dominating set of cardinality two or larger.

Proof. Observe first that, by [Richard, 2010, Theorem 1], G must admit a neg-
ative cycle, therefore a cycle C of length 3.

Since all pairs of vertices in C are connected by at least one edge, any stable
dominating set A intersects C in at most one vertex. Suppose that A contains
two vertices, and therefore a vertex i in C and a vertex j outside C. Write
A = {i, j} and C = {i, k, h}.

Suppose that the vertices in C are the only vertices that oscillate in the
attractor. Then j is fixed in the attractor. If j is not the target of any vertex,
then the value of component j is fixed to mj in all attractors. Since we assumed
that the directed graph underlying G is connected, j must be an inhibitor of at
least one vertex in {k, h}, meaning that the value of its target is fixed to zero in
any attractor, which precludes the existence of a cyclic attractor.

Therefore j is the target of either k or h. Assume without loss of generality
that j is the target of k. By Proposition 3 (ii), the attractor contains a state x
with xk = mk, that is, where component k is at maximum level and, therefore,
above the threshold for inhibition of j. Since j is fixed in the attractor, its
fixed value must be 0. That is, the attractor is contained in the 3-dimensional
subspace S = {x ∈ X | xj = 0}. By Remark 2, the restriction of the dynamics to
S is exactly a repressilator dynamics associated to the interaction graph G[C].
Since it admits a cyclic attractor, by Remark 4 G[C] consists of an isolated cycle.
Moreover, there exists a state x in the attractor where xi = mi and xk = xh = 0.
This means that j is not inhibited in x, a contradiction. Therefore all four vertices
must oscillate in the attractor.

By definition of a stable dominating set, k and h are inhibited by either i or
j. On the other hand, neither i or j can be an inhibitor of both k and h. Indeed,
suppose that i inhibits both k and h (the same proof works if we take j as the
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inhibitor). By Proposition 3 (ii), we can take a state x in the attractor where
xi = mi and both components k and h are inhibited. By the definition of the
dynamics, the attractor contains therefore a state y where yk = yh = 0. On the
other hand, since i does not inhibit j, the value of component j can increase to
mj . That is, the attractor contains a state z that satisfies zi = mi, zj = mj . By
Proposition 2, there is a path from z to the fixed point ϕ(A), a contradiction.

We can therefore assume that i inhibits k and j inhibits h. Since i, k, h form
a cycle and h is not inhibited by i, h inhibits i.

Suppose that there is no edge (k, i) ∈ E. Using Proposition 3, take a state
x in the attractor where xj = mj . Since j inhibits h, there also exists a state
y in the attractor where yj = mj and yh = 0. Since i is only inhibited by h,
then there exists a state z in the attractor where zj = mj , zh = 0 and zi = mi.
By Proposition 2, there is a path from z to the fixed point ϕ(A), which is a
contradiction.

Suppose now that there is an edge (k, i) ∈ E. If there also exists an edge
(k, j) ∈ E, then A′ = {k} is also a stable dominating set; using Proposition 3,
there exists a state x ∈ X so that xk = mk and by Proposition 2, there is a
path from x to ϕ(A′), a contradiction. Finally, if there is an edge (k, i) ∈ E but
(k, j) /∈ E, then this means that A′′ = {k, j} is also a stable dominating set,
and that vertex k ∈ A′′ inhibits vertices i, h ∈ V \A′′; as shown above, this also
leads to a contradiction. ⊓⊔

Theorem 3. For n = 4, if AD(G,m, t) admits both a fixed point and a cyclic
attractor for some maximum level assignment m and threshold assignment t,
then G satisfies the conditions of Theorem 2. More precisely:

1. AD(G,m, t) admits exactly one fixed point, with a stable dominating set A
of size one;

2. G[B] with B = V \ A has no stable dominating set, and B is minimal for
this property;

3. all vertices in B inhibit the vertex in A.

In addition, AD(G,m, t) has exactly one cyclic attractor.

Proof. Consider the minimum subspace κC,I of X that contains the cyclic attrac-
tor, meaning that all variables in V \C oscillate in the attractor. The interaction
graph of the restriction of the dynamics to κC,I is a subgraph of G[V \ C]. By
[Richard, 2010, Theorem 1], G[V \ C] must admit a negative cycle. Since loops
are excluded and all arcs are negative, G[V \C], and therefore G, must contain
a cycle of length 3. In particular, C has cardinality at most one, and at least
three vertices oscillate in the cyclic attractor.

(1) By Theorem 1, G has a stable dominating set A. By Lemma 1, A has size
one. Say A = {i}. By Proposition 2 and Proposition 3, i does not oscillate in the
cyclic attractor. Therefore this attractor oscillates in exactly three dimensions,
and there is only one stable dominating set, and therefore only one fixed point
(by Theorem 1).
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(2) We know that i is fixed in the cyclic attractor, and, by Proposition 2,
cannot be fixed at maximum level. Therefore, it must be inhibited in all states
in the attractor. Since it is inhibited and fixed in the attractor, it must take
value zero in all states in the attractor. That is, the attractor is contained in
S = {x ∈ X | xi = 0}.

Therefore the vertices in B form a cycle. By Remark 2, the restriction of the
dynamics to S is a repressilator dynamics associated to the interaction graph
G[B], and by Remark 4, G[B] is an isolated cycle, and has no stable dominating
set while all proper subsets of B admit a stable dominating set.

(3) Suppose that a vertex j ∈ B does not inhibit i. By Remark 4 there exists
a state x in the attractor where the components corresponding to B \ {j} are
zero, and i is not inhibited and is free to increase, a contradiction.

Finally, again by Remark 4, the cyclic attractor is unique (all cyclic attractors
contain the state where the vertex in A is zero, two vertices in B are zero and
the remaining vertex is at maximum level). ⊓⊔

4 Conclusion

Repressilators are biological networks composed only of inhibitions between com-
ponents, used in synthetic biology for their ability to exhibit oscillatory behavior.
However, in dimensions higher than 3, not all repressilators oscillate: in some
cases, the attractors are all fixed points. In this paper, we propose a method
to determine if a given repressilator of dimension n might present a cyclic at-
tractor. This method is solely based on the interaction graph without threshold
assignment, meaning that we avoid both the combinatorial explosion due to the
computation of the state transition graph, and the enumeration of the possible
threshold assignments.

A possible extension of this work could explore the applicability of a result
analogous to Theorem 2 with a weaker premise, making it less specific and more
widely applicable. Networks that are not repressilators and that might contain
positive interactions could also be considered. A complete characterization of the
asymptotic dynamics of repressilators in dimension 5 or higher also remains to be
investigated. Linking the theory and results developed in this work to and-nets
(such as in [Richard and Ruet, 2013]) could prove beneficial to this aim.
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